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PREFACE.

THE present volum e is intended to form a sound

introduction to a study of the Integral Calculus ,
suitab le for a student b eginning the subject. Like its
com panion

,
th e T‘Dij Q

A

reo
f

bmeal
I

Calcu lu s for Beginn er s ,

it does not therefore aim at com pleteness , but rather
at the om ission of all portions of th e subject Which
are usually regarded as best left for a later reading.

It Will be found, however , that th e ordinary pro
cesses of integration ar e fully treated

,
as also the

principal m ethods of Rectification and Quadrature ,

and th e calculation of th e volum es and surfaces

of solids of revolution . Som e indication is also

afforded to th e student of other useful applications
of th e Integral Calculus , such as th e general m ethod
to b e em ployed in obtaining the position of a

Centroid,
or the value of a Mom ent of Inertia.

As it seem s undesirab le that th e path of a student

in Applied Mathem atics should b e b locked by a

want of acquaintance With the m ethods of solving
"
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vi PREFACE .

elem entary Differential Equations , and at th e sam e

tim e that h is course should b e stopped for a sys

tem atic study of th e subject in som e com plete

and exhaustive treatise
,
a b rief account has b een

added of th e ordinary m ethods of solution of th e

m ore elem entary form s occurring ,
leading up to and

including all such kinds as th e student is likely to

m eet with in h is reading of Analytical Statics ,
Dynam ics of a Particle

,
and th e elem entary parts of

Rigid Dynam ics . Up to th e solution of th e general

Linear Differential Equation with Constant Coeffi

cients
,
th e subject has b een treated as fully as is

consistent with th e scope of th e present work .

Th e exam ples scattered throughout th e text have
b een carefully m ade or selected to illustrate th e

articles which they im m ediately follow. A consider
ab le num b er of these exam ples should b e worked

by th e student so that th e several m ethods explained
in th e

“
book-work ”

m ay b e firm ly fixed in th e

m ind b efore attacking the som ewhat harder sets at

th e ends of th e chapters . These ar e generally of a

m ore m iscellaneous character
,
and call for greater

originality and ingenuity ,
though few present any

considerab le difficulty . A large proportion of these
exam ples have b een actually set in exam inations

,
and

th e sources to which I am indebted for them ar e

usually indicated.
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INTEGRAL CALCULUS

CHAPTER I.

NOTATION,
SUMMATION,

APPLICATIONS.

1 . Use and Aim of the Integral Calculus.

The Integral Calculus is the outcom e of an en

deavour to Obtain som e general m ethod of finding the
area of the plane space bounded by given curved
lines .

In th e prob lem of th e determ ination of such an

area it is necessary to suppose this space divided upinto a very large num ber of very sm all elem ents .

We then have to form som e m ethod of obtain ing
the lim it of th e sum of all these elem ents when
each is ultim ately infinitesim ally sm all and their
num ber infinitely increased.

It will b e found that when once such a m ethod of

sum m ation is discovered
,
it m ay b e applied to other

prob lem s such as the finding of th e length of a curved
line

,
the areas of surfaces of given shape and the

volum es bounded by them
,
th e determ ination of

m om ents of inertia
,
the positions of Centroids , etc.

E . I . c. A 05



2 INTEGRAL CALC’ULUS.

Throughout th e book all coordinate axes will be
supposed rectangular , all angles will b e supposed
m easured in circular m easure

,
and all logarithm s

supposed Napieri an
,
except when otherwise stated.

2. Determ ination of an Area. Form of Series to
b e Sum m ed. Notation.

Suppose it is required to find the area of th e portion
of Space bounded by a given curve AB ,

defined by
its Cartesian equation ,

the ordinates AL and BM of

A and B
,
and the w-axis.

Fig. 1 .

Let LM be divided into n equal sm all parts
,
LQI ,

Ql , Q2Q3 , each of length it, and let a and b b e

th e ab scissae of A and B . Then b—a =nh . Also if
¢( fe) b e th e equation of the curve

,
the ordinates

LA
, QlP l , Q2P 2 , etc.

,
through th e several points L

,

Q1 , Q2 , etc.
,
are of lengths etc.

Let their extrem ities b e respectively A ,
P
I ,
P
2 ,

etc.,

and com plete th e rectangles AQI , P 1
622 , P 2623 , etc.

Now the sum of these n r ectangles falls short of

th e area sought by th e sum of the n sm all figures ,
AB

l
P
l ,
P
1
R
2
P
2 ,
etc. Let each of these be supposed
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to slide parallel to the waxis into a corresponding
position upon th e longest strip

,
say

Their sum is then less than th e area of this strip
,

fine in th e lim it less than an infinitesim al Of th e first
order

,
for the b readth Qn _ 1M 1 s h and is ultim ately

an infinitesim al of the first order
,
and the length

MB is supposed finite.

Hence th e area r equired is the lim it when k is

z ero (and therefore n infinite) Of the sum of the

series of n term s

h¢ (a ) 2h) 1 )h}.

The sum m ay b e denoted by
a+rh=b h -h

S h or 24
'

a+rh=a a+ r h=a

where S or 2 denotes the sum b etween the lim its
indicated.

Regardin
g

a+ rk as a variab le as
,
th e infinitesim al

increm ent m ay be written as 6a: or dam It is

custom ary also upon taking the lim it to replace the
sym bol S by the m ore convenient sign and th e

lim it of th e above sum m ation when k is dim in ished
indefinitely is then written

and read as
“
the integral of ¢(ce) with regard to x

[or of between th e lim its as : a and ac : b
,

”

Or m ore Shortly “from a, to b.

b is called the upper or superior lim it.

”

a is called the “lower or
“inferior lim it.”

Th e sum Of the n + 1 term s,

h¢(a ) —I )h}
differs from the above series m erely in the addition of
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the term or h¢ (b) which vanishes when
th e lim it is taken . Hence th e lim it of this series
m ay also b e written

3. Integration from the Definition.

This sum m ation m ay som etim es b e effected by
elem entary m eans

,
as we now proceed to illustrate
b

Ex. 1 . Calculate f e
xdx.

Here we have to evaluate
Lt, fl e

a
e
a+h e

a+2h e
ar l-1h

] ,

b=a +nh

Lth z oll e
a, Lth=o(8

b
8
a

)
e
h

/L

1

[By Difi
'

. Ca lc. for Beginner s, Ar t.

=e
b —e

“
.

=n—1

Ex. 2 . To find[
b

xdx we have to find Lt 2 where

b a .

a

Now Haw /lam a. n+ it
z

.

1 )

—
a(b —a —lz ) ,

and in th e lim it b ecom es

6

2

2

q:
b

Ex. 3 . To findIédx we have to ob tain th e lim it when It is
indefinitely dim ini shed of

1 1 1 1
h e
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6 INTEGRAL CALCULUS.

EXAMPLES.

Prove by sum m ation that
b
f e

‘ xdx=e
‘ “

a

2 . f
b

sinh .r dx : cosh b cosh a .

b
3 . f xgdx

4 . f
5 . [

b

oos 0d6= sin 6—Sin a .

4. Integration of air".

As a further exam ple we next propose to consider
the lim it of the sum of th e series

—1 h)
m

l,

where h
6—0

3
n

and n is m ade indefinitely large , m + 1 not b eing z ero.

m 1

[Lem m a — Th e Lim it of (T l
-70
h

"

;
“
y is m I when k is

9
m

indefin itely dim inished, whatever 3/ m ay b e, provided it b e offin ite m agn itude .

For th e expression m ay b e written
m 1

—1
Q2
I,

a

and s ince it i s to b e ultim ately z ero we m ay consider 3to b eless than un ity, and we I naa

y
therefore apply th e B inom ial

Theorem to
‘

expand whatever b e the value of m + 1 .

y
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Ca le. for Beginners, Ar t. Thus the expression
_ y 1

IL (m + 1 )m 11 2

Ili<m + 5+ 1 2 y
2

=f

\
m + (a convergent series)

=m 1 when It i s indefinitely dim inished.

In the result

(y+h)
m + 1

Lth=0
ky

m

put y successively a
, a h

, a 2h
,
etc. a (n 1 )h ,

and we get

L150
] , h)

m +1 a
m -H (a 2h)

m +1 (06 h)m +
1

m + 1 ,

Lt (a+ 2h)
m +1

h (a+ 2k)
m

Lt
(a n 1h)

m + 1

h(a+n

m + 1

or adding num erators for a new num erator and de
nom inators for a new denom inator ,

hIa
m
+ 2k)

m
+ .

- Ih)
m

]
or

Lth + (a+n—1h)m ]
bm +1 __am +1

m + 1

In accordance with the notation of Art. 2
,
this

m ay be wr itten
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The letters a and b m ay represent any fin ite quantities what
ever, provided x

m does not b ecom e infin ite b etween m z a and

x==b.

When a is taken as exceedingly sm all and ultim ately z ero
,
it

is necessary in th e proof to suppose it an infinitesim al of higher
order

,
for it has b een assum ed that in th e lim it if is z ero for

all the values given to y. .

7/

When b z 1 and a=0
,
ultim ately th e theorem b e

com es

I

on+ 1
if m + 1 be positive ,

00 if m + l b e negative.

This theorem m ay b e written also

m i.
according as m + 1 is positive or negative. The lim it

or , which is th e sam e thing ,

n
m i ‘ 1

differ s from the form er by “

7

1

?
fil e. by O in the lim it

,

1
and is therefore also or 00 according as m + 1 is

m 1

positive or negative. Th e case when m + 1 =0 will
b e discussed later .

Ex. 1 . Find th e area of the portion of th e parab ola y2=4ax
b ounded by th e curve

,
th e x-axis, and th e ordinate x=e.
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Let us divide the length 0 into n equal portions Of which
NM the and erect ordinates NP

,
Then if

PR b e drawn parallel to N III
,
th e area required is the lim it

when n is infinite of th e sum of such rectangles as Bill (Ar t.

r= (n —1 )
LIEPN . NM or Lt Z

where nlt z c.

Now I)h1}L

— I )I
C
g

727

[By Ar t.

Area 1215 of §e~/4ae

of the rectangle of which the extrem e ordinate and ab scissa
of th e area ar e adjacent sides .

Ex. 2 . Find the m ass of a rod whose density varies as th e

m th power of th e distance from one end.

Let a b e the length of th e rod
,
to its sectional area supposed

uniform . Divide th e r od into n elem entary portions each of

length g. The volum e of th e (r + 1 )th elem ent from the end
n

of z ero densitv is ( 091
,
and its density varies from to

m n n
r + 1 a

) I ts m ass is therefore interm ediate b etween

R

and
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Thus th e m ass of th e whole rod lies b etween
+ (7l 1 )

m

n
m + 1

and in the lim it
,
when 72 increases indefinitely, b ecom es

(Da
m

m + l

5. Determ ination of a Volum e of Revolution.

Let it b e required to find the volum e form ed by
the revolution of a given curve AB about an axis

in its own plane which it does not cut.

Taking the axis of revolution as the cc axis , the
figure m ay b e described exactly as in Art . 2 . The

Fig. 3.

elem entary r ectangles AQI , P 1O2 , P 2
623, etc. ,

trace in
their revolution circular discs of equal thickness , and
of volum es WAL2 .LQ1 , wP 1Q1

2
. Q1Q2 , etc. Th e several

annular portions form ed by the re volution of the

portions AR
1
P
1 ,
P
1
R
2
P
2
. P 2

R
3
P
3 ,

etc.
,
m ay be con
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APPLICATIONS. 1 1

sidered m ade to Slide parallel to the ac-axis into a

corresponding position upon th e disc of greatest radius ,
say that form ed by th e revolution Of the figu re

Their sum is therefore less than this
disc

, Tie. in the lim it less than an infinitesim al of the
first order , for the b readth Qn _ 1N is h

,
and is ulti

m ately an infinitesim al of th e first order
,
and the

length NB is supposed fin ite.

Hence the volum e required is the lim it, when It is
z ero (and therefore n infin ite) , of th e sum of th e ser ies

+n

or as it m ay b e written
were or

Ex. 1 . The portion of th e parab ola 2=4ax bounded by theline x=c revolves about the axis. Fin th e volum e generated.

Fig. 4.

Let the portion required b e that form ed by th e revolution of

th e area APN , b ounded by the parabola and an ordinate PN .
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"

Then dividing as b efore into elem entary circular lam inae
,
we

have
2

Volum e -t n] g/
zdx : Alan-[

c

xdx z 4am [Art .

AN

2 cylinder of radius PN and height AN.

[Or if expressed as a series
0

Volum e x dx
w its >P
— 4a7r 9

2
-

2

2a7r02. ] [Ar t.

Ex. 2 . Find th e volum e of the prolate spheroid form ed by the

revolution of the ellipse —
2
= 1 ab out th e x axis.

Fig. 5.

D ividing as b efore into elem entary circular lam inae whose
axes coincide with th e x-ax1s th e volum e i s twice

a

2
62

2 _
71
-
3/ dx

“
w
a
2(a

o 0

which, according to Article 4 , is equal to
2 3 _ 3

-
a

3

0

] or Ar abs

and th e whole volum e is §7rab
2
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CHAPTER II.

GENERAL METHOD. STANDARD FORMS.

6. Before proceeding further with applications of

the Integral Calculus , we shall estab lish a general
theorem which will in m any cases enab le us to infer
the result of the operation indicated by

¢(w)dw

without having recourse to the usually tedious
,
and

Often difficult
,
process Of Algeb raic or Trigonom etrical

Sum m ation .

7. PROP. Let be any function of x which is
finite and continuous between given finite values a

and b of the variab le a) ; let a b e b
,
and suppose th e

difference b—a to be divided into n portions each
equal h ,

so that b— a z z nh . It is required to find the

lim it of the sum of th e series
¢(a h) ¢(a 2h) ¢(b h)

when h is dim in ished indefin itely ,
and therefore n

increased without lim it.

[It m ay at once b e seen that this lim it is finite for if (Ma + rh)
b e th e greatest term th e sum is

< (n rh) ,

(b rh) hq5(a rh) ,



GENERAL METHOD. STANDARD FORMS.

which is fin ite
,
since by hypothesis (MT ) is fin ite for all values of

2: interm ediate b etween 6 and a . ]

Let iflw) b e another function of T such that ¢(w) is
its differential coefiicient, i .e. such that

91W) WW)
We shall then prove that
Lth i/f (b)

and therefore ¢(a) IN“h

}
? SM“)

a 1 ,

where oz1
is a quantity whose lim it is z ero when It

dim inishes indefinitely ; thus
h¢<a> we ewe ) +ha1 .

Sim ilarly
h¢(a h) Ma 2h) MG, h) ha

2 ,

h¢(a 2h) Ma 3h) ¢ (a 2h) ha
3 ,

etc.
,

h¢(a+n 1 h) i/f (a nh) rb (a+n

where the quantities a2 ,
a3 , an are all

,
like a l ,

quantities whose lim its ar e z ero when h dim inishes
indefinitely.

By addition
,

¢(a+ 2h)+ —h)]

Let a b e the gr eatest of the quantities a, , G 2 , an ,

then
h[a 1 (1 2+ an] is nha

, i .e. (b d )a ,

and therefore vanishes in the lim it. Thus
-h)] pas—Ma ) .
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"

.

The term h¢(b) is in the lim it z ero ; hence if we
desi re

,
it m ay b e added to th e left-hand m em b er of

this result
,
and it m ay then b e stated that

W? IMO—Ma) ,

This result ¢ (b)—3b (a) is frequently denoted by the
notation [gb (mils
From this result it appears that when the form of

th e function ¢ (x) (of which ¢(cc) is the differential
coefficient) is Obtained

,
th e process of algeb raic or

trigonom etric sum m ation to obtain ¢(w)dae m ay be

avoided.

Th e letters I) and a ar e supposed in the above work
to denote finite quantities . We Shall now extend our

notation so as to let ¢ (5e)dx express the lim it when

b b ecom es infin itely large of \b ( b) i .e.

Sim ilarly by ¢(az)dw we shall be understood to

m ean

or Lia m

m + 1

Ex. 1 . The differential coefficient of Z“is plainly A
m

.

Hence if qS(x) as
” we have

b bm + l m + 1 bm + l

we a
'm dx

m + 1 m + 1
a
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Ex. 2 . Th e quantity whose differential coefficient is cos xknown to b e sin 27. Hence

6

[ cos x dx= S1n b—S in a .

Ex. 3. The quantity wh ose differential coefficient
itself e”. Hence b

fe
‘ dx=e

b —e
“

.

EXAMPLES.

Write down th e values ofb 1

f xwdx, 2 . jx
mdx

,

oa

a i
5 . cos x dx, 7. jsecxtan xdx,

1 b
8 . f

1
dx

,
10. f

0

8. Geom etrical Illustration of Proof.

The roof of th e above theorem m ay b e interpreted geo

m etrica ly thus
Let AB b e a portion of a curve of which th e ordinate i s finite

and continuous at all points b etween A and B
,
as also th e

tangent of the angle which th e tangent to th e curve m akes
with th e x-axis .

Let th e ab scissae of A and B b e a and b respectively. Draw
ordinates AN

,
BM

Let th e portion NM b e divided into n equal portions each
of length h . Erect ordinates at each of these points of division
cutting the curve in P

, Q, R,
etc. Draw th e successive

tangents AP ] , P 621 , QB I , etc.

,
and th e lines

AP27 P 622 ) QRz aparallel to th e a-axis
,
and let th e equation of th e curve b e

and let XV =(03)
then 2h), etc.

,
ar e respectively

tan P2API , tan Q POI , etc.

,

E . I . C . B
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and kcfla) , ar e respectively th e lengths
P 2P1 , Q2Q1 , R2R1 , etc.

Now it is clear that th e algeb raic sum of

P
2
P
, Q2Q, R213, is MB —NA

,
i.e. x0(b)

Hence

P2P1 + Q2Q1 +R2R1+

Fig. 6 .

Now th e portion w ithin square b rackets m ay b e shewn to

dim in ish indefin itely with h . For if B 1
B for instance b e the

greatest Of th e several quantities P 1P , OIQ, etc.

,
th e sum

[P ,P + is < nR,R,
t.e. < (b

But if th e ab scissa of Q b e called x, then

[Dijfl Calc. for B eginner s, Art.

so that

and (b A
R

}?
(5 ‘

3
‘ “Marx Oh) ,

which is an infinitesim al in general of th e first order.
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Thus
Lth=0 [P2P 1 QzQi Rl I l

i
b“)

or Lth 0h[qS(a ) d>(a h) ¢(a + 2h) q5(b h)]
Also since Lth=0hq5(b) 0

,
we have

,
by addition ,

<I>(a h) (Ma 2h ) Mb)

9. Interrogative Character of the Integral Gal
culus.

In the differential calculus the student has learnt
how to differentiate a function of any assigned char
acter with regard to the independent variab le con

tained. In other words
,
having given y

:

ruse) ,
m ethods have b een there explained of Obtaining the
form of the function gl ’

(az) in th e equation

Th e proposition of Art. 7 shews that if we can r ever se

this Oper ation and obtain the form of ¢ (m) when gl ’

(az)
is given we shall be ab le to perform th e operation

i .e.

by m erely taking the function XMCB) , sub stituting b

and a alternately for x and subtracting the latter
result from the form er ; thus Obtaining

MO M66)
We shall therefore confine our attention for th e

next few chapters to the prob lem of r ever sing the

Oper ation s of the difier en tia l ca lculus.

Further , the quantity b has b een assum ed to have
any value whatever provided it b e finite ; we m ay
therefore replace it by w and write the r esult of the

proposition of Art 7 as

—
xb (a)
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10. When the lower lim it a is not specified and

we ar e m erely enquiring th e form of th e (at present)
unknown function ruse) , whose differential coefficient
is th e known function th e notation used is

Wm) ,

the lim its b eing om itted.

1 1 . Nom enclature.

Th e nom enclature of these expressions is as follows
Twyla? 0 1

“ MID—Ma)

is called the definite integral of ¢(a ) b etween lim its
a and b

News or ARA—we
where the upper lim it is left undeterm ined is called
a corrected integral ;

or

without any Specified lim its and regarded m erely
as th e reversal of an operation Of th e differential
calculus is called an

“
indefinite

”
or
“
uncorrected

”

integral.
12. Addition of a Constant.

It will be Obvious that if ¢ (cc) is the differential
coefficient of ruse) , it is also th e differential coefficient
Of where O is any constant whatever ; for
th e differ ential coefficient of any constant is z ero.

Accordingly we m ight write
2 02 + 0.

This constant is however not usually written down ,
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2 2 INTEGRAL GALGULUS .

which very well expresses th e interrogative character
of th e operation we ar e conducting.

‘

1 5. General Laws satisfied by the Integrating

Sym bol

( 1 ) It will b e plain from the m eaning of the

sym bols that
¢(w)d96 is 9M) ,

but that ¢ (m)elm is g5(m)+ any arb itrary constant.

(2) Th e Operation of integration is distributive ;
for if n

,
v
,
me b e any functions of m ,

elm elm a v w

and therefore (om itting constants)

elm elm w elm (n v w)olm.

(3 ) Th e Operation of integration is com m utative

with regard to constants .

For ifgig—f v,
and a b e any constant, we have
9g n a

du

elm
a

Glhz

that (om itting any constant of integration)
an avelm,

a doe

which estab lishes th e theorem .
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1 6. We now proceed to a detailed consideration of

several elem entary Special form s of functions.

17. Integration of m”
;

CU’H' I

By differentiation of
n + 1

we obtain

Hence (as has been already seen in Art. 4 and

Art. 7, Ex. 1 )
x
n+ 1

n + 1

Thus the rule for the integration of any constant
power of m is

,
Iner ease the indem by unity and divide

by the indem so incr eased.

For exam ple
,

”4

3 fi r -f ir
“

EXAMPLES.

Write down the integrals of
1 . m

,
1
,
O
,
m99

,
909
99
,
33
1000

2 . 23
—1 1

,
22
—101

,
32
-99

3 . m5
“

,
333

, m
g

.

4 . mP
"

,
m

5 . dx+—b—
2

a bm+
m

6
am

2
+ bm+ e
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18. The Case of 23
-1

It will b e rem em b ered that m “ 1
i s th e differ

ential coefficient of log m. Thus
dm log m.

This therefore form s an appar ent exception to the

general rule

n + 1
'

1 9 . Th e result, however, m ay b e deduced as a lim iting case.

Supplying the arb itrary constant, we have
x
n 'i' l

x
'n-Pl 1

G
n+ l

+

where A=O+
n + 1

and is still an arbitrary constant.
Taking the lim it when 71 + 1 =0,

x
n +l 1

takes th e form log m,
n 1

[D ifii Calc. for Beginner s, Art .

and as G is ar bitrary we m ay suppose that it contains a nega
tively infinite portion _

n-l1 together with another arbitrary

portion A.

Thus m+A.

20. In the sam e way as in the integration of m
”

we have
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n (am
and therefore (am+ b) dm

(n

elm 1

b a/
logatCB-l b)

[For convenience we shall Often find

rinted as
dm 1

dm as
elm

P
V a

2
+m

2 J a
2
+m

2
’

EXAMPLES.

Write down th e integrals of
1 . am, m

“
, a+m, a —m

, a—ma.

a m a +m 1
2 —

a 9

m a m d +x

3
m I I I

d + x
’

a —bm
’

(a —m) (a
I I I I I

4
1

a + r a —m
’
m + a m —a

’

(a+m)
2
(a —m)

2
°

21 . We m ay next rem ark that since th e differential
coefficients of and of log ¢ (m) are respectively

and
W )

we have [qs
qi
m

lfi
l h l

and gb
l

<x>dm log
956913)

The second of these results especiall is of great
use . It m ay b e put into words thus —t e in tegra l of
any fraction 0f which the num er ator is the difier en tial

coefiicient of the denom inator is
log (denom inator ) .

For exam ple
,
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fcot m elm log Sin m,

ftan .vdx log cos m log sec m,

e
x

c
“ ’c

e
x

e
_ x
dm log(e"

EXAMPLES.

Write down th e integrals of
x

n x

(am2 bx b) .

22. It will now be perceived that the operations Of

the Integral Calculus ar e Of a tentative nature
,
and

that success in integration depends upon a know
ledge of the results of differentiating th e sim ple
functions . It is therefore necessary to learn th e tab le
of standard form s which is now appended. It is

practically th e sam e list as that already learnt for
differentiation

,
and the proofs Of these results lie in

differentiating th e right hand m em b ers of th e several
results . Th e list will b e gradually extended and a

supplem entary list given later.
PRELIMINARY TABLE OF RESULTS To BE COMMITTED

TO MEMORY.
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OS m dm

n m Olm cos m.

ec
2
m elm tan m.

ec
z
m dm cot m.

sec m.

cosec m.

an m elm log sec m.

Art. 21 .

ot m elm log sin m.

tan 1

coseC
" 1

covers 1

24 . It is a help to th e m em ory to ob serve that all those
integrals of th e ab ove list which b egin with th e letters “co

,

”

m m
as cos m, cos

‘ 1
covers ‘ 1

etc.,
have a negative Sign prefixed to

aa
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them . The reason is ob vious . Each of these functions decreases
as m increases through th e first quadrant their differential co
efficients ar e therefore negative .

A lso it is a further help to Ob serve th e dim ensions of each side .

a —m
2

dim ensions . There could therefore b e no 1 prefixed to th e in

integration m ust b e of dim ensions —1 . Thus th e integral could
not b e tan

- 1 x

(which i s of z ero dim ensions) . Th e student should
a

therefore have no difficulty 1 11 rem em b ering in which cases th e
factor 1 is to b e prefixed.

a

EXAMPLES.

Write down th e indefin ite integrals of the following func
tions :

1
1 m m se

n—1

m + 1
"
m+ 1

’

m
z
+ 1

’

m
3
+ l

’
m
n
+ a

n
°

2 . 2
x

,
x
3
+ 3

x

, a+ b
x
+ c

m

@c
2

5
, cos

3
m . sin m

,
tan

”
m sec

z
m.

4 Cot aH-tan m
,

cos m ( :
i 1

S in m sinzm

2

3
1 1 1

J i —xz
’

9 +x
‘3’

AMA—4

1 1 1

7
tan

-1
m sin

—1
m sec

—1
m

.m
"“1

e
f “l

cot m l
8 .

log Sin m
’ —1
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30 INTEGRAL GALGULUs .

e
-tan

1 + 30
2

1 dm

1 +m
2 dz

and the integral b ecom es

etam
1x dx

f
w

d 2d -
e
z
z tan 1m

l + r
z dz

Z e z e

Thus to integrate [
e

1x

dm, let tan
1
m=e. Then

26 . In using th e form ula

m)dm

after choosing the form of the transform ation
it is usual to m ake use of differentials

,
writing th e

equation
dm

dz

th e form ula will then b e reproduced by replacing dm
of the left hand side by and m by F (z ) .

Thus in th e preceding exam ple, after putting tan—1
m= z

,
we

m ay write
1telm — dz and [

8

11
m

fl

x

dm z fé dz =etc
1 +m

2

F
’

( z ) as Olm F
’

( z )dz

27. We next consider the case when the integration
is a definite one b etween Specified lim its .

The result ob tained above
,
when m=F(z ) is

(m)dm dz .

.flw)

m)dm 1
,
0(m) 0

and if th e lim its for m be a and b
,
we have
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Now when m a
,

z F l
(a )

and when m= b
,

and éxfilfl z » ,

whence
F

‘ 1
( b) w e) at
f {

F
“1
(a) F“(05>

“ MIFIF
‘ WOH 1Mil

l

i

so that the result of integrating with r e

gard to z b etween lim its F “ 1
(a ) and F

‘ 1
(b) is identical

with that of integrating f(m) with regard to m between
the lim its a and b.

Ex. 1 . Evaluate —
1

cos J; elm.

N
/m

Let m 2
2
,
and therefore elm 2 z dz

1

75

cos Ji dm =fécos z

Ex. 2 . Evaluate fm zcos r 3dm.

Let m3= z
,
and therefore 3m2dm=dz

fmzcos m3dm =
1

Ex. 3 . Evaluate m

0
+ m

2

Put m=tan 0, then dm= sec
zOelO

when m=0
,
we have

when m= l , we have
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[
4 tan 0

seem dO [
4

sec 9 tan 9 d0
sec 9

0 0

[sec (91
1

: sec sec 0 1 .

o

1 dx 1

Ex. 4 . Evaluate
x [i e. 2] sech m dm]

0
e
at -H

0

Let e
z = z

, then e
“dm=dz . When m=0

,
e z=1

, and when m= 1 .

z = e. Hence

I e edm dz

[tan
-I
z ] tan

“ 1
e tan

—1
1 tan

-1 8 1
,

0 1
I + z 1 e+ 1

Th e indefin ite integral is tan ‘ l
e
x

.

EXAMPLES.

1 . Integrate e
x
cos e

x

(Put e
x

z )
nm

n ‘ l
cos m

”

(Put m
"

z ) ,

1 cos(log m) (Put log m = z ) .

2m 3m
2 . Evaluate

1 +x
4
dm (Put m2= z ),

1 { m6
(Put m3= z ) .

Integrate a cos m
bm3

ae
’
sin e

x b tanh m .l +m
8

(4)
Evaluate I (Put 2 + 1 = z ) .

o

5 . Evaluate 1 (Put m+ 1 = z ) .
o

6 . Evaluate [
3 dx

2
(Put m

2 (m 2

7. Evaluate
8 . Evaluate
9 . Evaluate
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NOTE ON THE HYPERBOLIC FUNCTIONS.

28. Definitions.

For purposes of integration it is desirab le that the
student shall b e fam iliar With the definitions and

fundam ental properties of the direct and inverse
hyperbolic functions.

By analogy With the exponential values of the

sine
,
cosine

,
tangent, etc.

,
the exponential functions

e
x—e

’ x
e
x—e

’ x

2 2 e
x

etc.

are respectively written
sinh as

,
cosh a)

,
tanh w

,

29 . Elem entary Properties.

We clearly have
cosh zaz sinh zaz

sech zw tanh2a3

coth ac

cosh zw sinh 2x

-:v a: -x

2 sinh a: cosh a: 2
6
75

6 3 + 6
—
2
—
6

sinh 2cv
,

With m any other results analogous to the com m on

form ulae of Trigonom etry .

a 1 . c . o

2
6
x_ e

-x 2

6
95—6

4
sinh az

cosh w

e
x
+ c
“”

cosh w 1

e
x

sinh x tanh m

(
e
x

z
e

6
2x
+ e

—2x

2
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‘

s.

30. Inver se Form s.

Let us search for th e m ean ing of the inverse
fun ction sinh
Put sinh l

x y ,

y=log (a3 1 J 1

take this expression with a positive

31 . Sim ilarly ,
putting cosh -lx :

y,
we have

and 6
2” 2wey+ 1 O

and ey z x i Z— l
,

whence y
“

leg (as t J 513
2

and we shall take this expressm n with a positive
V IZ .

,

— 1 as cosh - 1
90.

32. Again ,
putting tanh r ig ,

we have
6 3! e y

w= tanh y
ey+ e

‘

y
’

and therefore

whence tanh “ 1
565: 3

1
; log

1 a:

1 —w
'
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w+ 1
Sim ilarly coth l

x «5 log
a: 1

.

33 . We shall thus consider
sinh 1

synonym ous with log

cosh 1
synonym ous with log

synonym ous with 5 log

{I}
coth -1

&
synonym ous

34. The Guderm annian.

Again ,
th e function cos

-l
sech u is called the Guder

m ann ian of u and wr itten gdu .

If w cos
1
sech n ,

cos a; sech u
,

tan a; sinh u .

gd u cos
1
sech u sin 1tanh u tan 1

sinh u .

35. Further , if u log tanCL
r

1 tang
we have
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h 59 c
“1w ence tan

2 e
“ 1

2a

2
6 1 6

sinh u .

Hence a: tan 1
sinh u gd

I {E -1log tan(4 + 2>—gd w
,

the inverse Guderm ann ian of as.

EXAMPLES.

Estab lish the following results
1 . jcosh xdx= sinh x.

2 . [sinh xdx cosh x. sech x.

3 . fsech
‘é
r dx tanhx. cosech x.

7. Writing sg x for sin gd

results

4 . foosechgx ciz ' coth x.

5 f
sinh x

etc. ,
estab lish th e following

jc dx=gdax

fcg2xdx=sg x.

i s .

c
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J a
z —1wzdm a cos

29. (19

1 cos 29

2 2

sin 29
6

5
1

2
—9

a
?

sa sm 6 . a co
’

s 6+ —

2
—6

J a
z

913d

To integrate J et
?

w a
'

sinh z
,

dw=a éosh z dz ;

then since 1 sinh2e cosh z z
,

we have J wzdw cosh 2z dz

(cosh 22 1 )dz

2

sinh 22:

5a sm h z a cosh z +
§
z
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Let a: a. cosh z ,

then else a sinh z dz
then since cosh z z 1 sinh z z

,

s d
z doc d inh z z dz

cosh 2z 1 )dz

5a sinh z . a, cosh z
2 _ 2

Jw2—d
2dwz

w a; a

2

42 . If We put tan x= t, and therefore sec
z
a; dx z dt

we have
sec3a: dd 1 {5

2di

tan a: sec 51:

2

sm a; 1 sin 90

2 cos%
if log1 sin as
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Integrals of cosec w and sec 90.

tan 2
0

z ; taking the logarithm ic differential2

dd dz

sin 00 z

sec at dcc log z log tan

In this exam ple let a: g y.

dw dy,

ec y dy= log tan (it

Hence ec a: dw= log tan or gd
l
ac

44 . We have now the

ADDITIONAL STANDARD FORMS,
da:

s -l-a
z

dx

J m
2—d

2

Jd2+ d
2dw
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sec 90doc log tang.

secwdon — log tang
r

gd
1
513.

EXAMPLES.

Write down th e integrals of
1 1 1

J ]. + 30
2
.

Jae“2x,

5.

x2+2x+ 3 z
z
+ 2z + 3 x3+ 2x+ 3

7 x+ 1 1 +x
’
x l + .x"

x—l l —x

l 1 tan%
8. cosec2x cosec dx+ b

cos —sm zx
’
1 tan ‘x

’

1 l
9 .

sm x+ cos x
’

a sm x+ b cos x

0

10. Deduce foosecxdx= log tangby expressing cosecx:as

1 1 . Find fsecxdx by putting sin x=z .

41
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1 2 . Show that fsec x dx cosh
‘ 1
(secw) .

1 3 . Integrate

1

a: logx
’

30 log or log( log x)’
1

when I’m represents log log log x
,
the log b eing . repeated

r tim es .

b lo
g
m
dx” : 7}log(2 log(ab ) .

[Sn PETER’S COLL , etc. ,



CHAPTER. IV.

INTEGRATION BY PARTS.

45. Integration
“by Parts of a Product.

r d
Since

it follows that

If u : ¢ (x) £1 11.1 d so that v : the

above rule m ay b e written .

¢<w>m
or interchanging ¢ (x) and

¢ (m)dx Tap)

Thus in integrating the product of two functions , if
the integral be not at once obtainab le ,

it is possib le
when th e integral Of either one is known , say 1pm) , to
connect the integral

dfv du
u
a
—‘

w
dw U

zi
-

E;
dd}

,

du
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with a new integral 314 90) da:

which m ay be m or e easily integrable than the original
product.

46 . Th e rule m ay b e put into words thus
Integral of th e product

1 st fun ction x Integral of 2nd
- the Integr al of [Diff Co. of 1 st x Int. of 2nd] .

Ex. 1 . Integrate x cos
Here it is im portant to connect if possib le [33 cos nxdx with

another integral in which the factor x has b een rem oved. This
m ay b e done if x b e chosen

.

as the function (Mm) , since in the
second integral i.e. unity, occurs in place of 90. Then

(Mm) z ap
, W”) cosM,

sin M

n

Thus by th e rule
sin nx

fa: cos nxdx=x n

47. Unity m ay b e taken as one of the factors to aid

an integration .

[log xdx z fl logxdx

x log x

z ( log x 1 ) 50 log,
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"

CALCULUS;

The student will ob serve that these results are the sam e that
we should ob tain by putting n : 1 in th e form ulae

d m sm 6

dx cos cos (bfc ' f n tan
1

a

[D ifil Ca lc. for B eginner s, Art. 61 , Ex.

Arid this is otherwise obv1 0us. For if to differentiate
e
m sm

(bx) IS th e sam e as to m ultiply by a factor Ma zr i b2 and to
increase the angle by tan

- 12, the integration , which is the

inverse operation , m ust divide out again th e factor Ja 2+ b3
b

and dim inish th e angle by tan-k .

a
t

Ex. 2 . Integrate da2—x2 by th e rule of integration by parts .

<a2—x2)
l

[Note this step ]

whence, transposing and dividing '

by 2 ,

xx/a2 x2 a
2

sin
2

‘

2

which agrees with the r esult
'

of Art. 39 .

Ex . Integrate e
3’
sin2x cos

3
x.

‘

6
3a:

Here e
3”
sin2x cos

3
x a

T
siu22x cos x —

8
—( l cos 4x)cos x

1

1 4 eBxcos 3x e
3“’
cos 5x) .



INTEGRATI01V BY PARTS .

Hence
,
by Ex. 1 ,

2 3 6
31: 2 _ 1 1

fe
3x
s1n x cos xdx cos (x—tan

1 6 Jio 3

‘1 ”

l
1

— cos 3x _ _ cos 5x— tan
4 J34 3

[Com pare Ex. 1 6 , p. 55
,
Dzfi. Calc. for Beginners, putting

n : 1 in th e result ]

EXAMPLES.

Integrate by parts
1 . xe

‘

,
x3c
"
,
x cosh x

,
xzcosh x.

2 . x cos x
,
x2008 x

,
x cos 2x, x cos

z
x
,
x cos3x.

3. x sin x cos x, x sin x sin 2x sin 3x.

x2logx, x
”logx, x

"
(logx)

?

5. e
x
sin x cos x

,
e

‘
s in x cos x cos 2x.

6 . e
u
sinpx sin qx sin xx.

w n

1
O O

’

r
O

7. Calculate jx sm xdx x s1n
2xdx

, f x2s 1n xdx.

0 o

0

9 . Integrate [sin
-lxdx

, fx sin ‘ l x (ix,

50. Geom etrical Illustration.

Let PQ b e any arc of a curve referred to r ectangul
axes 0x

, Oy,
and let th e coordinates of P be (x0, yo) ,

and of Q (x1 , yl ) .
Let PN

, QM b e th e ’ ordinates and Qllf 1 th e
ab scissae of the points P

, Q. Then pla
areaPNMQ

i

rect. OQ rect. OP areaPN
1
M
1 Q.

“

area



48 INTEGRAL CALCUL (is .

Thus y dx : (x1y1 m
oyo)

Let us now consider the curve to b e defined by the
equations

x=¢ (t) E u
,
say ,

and say ,

and let to and 15
1
b e the values of t cor responding to

th e values x
0, yo, and x

1 , 9 1 of x and y respectively.

We then have

“3
19 1 m

oyo
“T

'

EWE’J



INTEGRATION B Y PARTS.

so that the equation above m ay b e written“
l

c
é

cgdt [w ]
1

11,t

and thus th e rule of integration by parts is estab lished
geom etrically.

51 . Integrals of the Form

x
m
sin nx dx,

os nx dx.

Reduction form ul ae for such integrals as the above

m ay readily be found. Denote them respectively by
Sm and Om . Then

,
integrating by parts , we have at

once

—m
m

77;
+
E
Om - l a

sm nx m“m
7 ?

“

n
Sm - l

cos fnx m sin nx m —l
x

’m

n n n n

m
sm fnx m

m _ 1
cos nx m — l

x x
n n n

+m x
m ‘ 1

+m wm
_ l
cos nx m (m —1 )

Thus when th e four integrals for the cases m =0

and m = l ar e found
,
viz . ,

S
0

11 nxdx

E . I . C.
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sin fax
cos fnxdx

n

cos nx sin nx

n

sin nx cos fnx
0
1

cos nxdx x
2

n n

all others can b e deduced by successive applications of
the above form ul ae.

52. Extension of the Rule for Integration by
Parts.

If u and 1) be functions of x and dashes denote
difi

'

erentiations and suffixes integrations with respect
to x we m ay prove the following extension of the

rul e for integration by parts ,
ao dx no

,
fu/v

z
u

”

1)
3

f
ax/

”

v
4

dx
,

Where is wr itten for u with n 1 dashes ; for
dx =uv

1

l
olx = fufv

2

IIll

etc. etc.
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Hence adding and subtracting alternately

uvdx=uv
l

—u

1 l
uv» Dun l )

Ex. 1 . If we apply this rule to fx
m
e
axdx

,
we im m ediately

ob tain

fx
m
g
az dx=xm m x

m ‘

e
ux

—m (m 1 ) (m 2)x
m *s-

Z;4

Ex. 2 . It will b e at once seen that th e integrals

fx
m
sin 71xdx and fx

m
cos nxdx

of the last article m ay b e treated in this way.

EXAMPLES.

Write down the integrals of
1 . x4e

x

,
x3cosh x

,
x58 inl1 x.

2 . x2sin x
,
x3sin x

,
x38 in2x

,
x4 8 i11 x cos x.

3 . Evaluate x58 in xdx
, f

1

x500s xdx,

0

53. The determ ination of th e integrals
“
sin bx dx

,
xnc‘ w

cos bxdx
,

m ay b e at once effected.

For rem em bering
c

‘m’
sin

cos(bw

where
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we have
xneaxsin bxdx (bx gt) e

m
sin (bx

n !
(bx n

or sin bx Q cos bx}
where

wn Q3
” 2

7
cos qt

—n cos 2¢+n (fa D7 3
cos 391)

wn wn 2

7
(ls
—«n

x
2

sm 2¢+
fn(n -l )

Sim ilarly
x
n
e
ax
cos bxdx P cos bx Q sin bx}.

Ex. 1 . Integrate fx33
1
sin xdx .

Since [e
x
sin xdx 2

-l
e
z
s in x

7

4

1 _ 2

we have fx
g
e

’
sin x Z) 3x22

1T
e
"
sin (x g)

i

371
+ 6x . 2 e

x
sm<x I ) 6 2 e

"
SIn(x— 7r )

etc.

Ex. 2 . Prove
r=n _

r+1

jx
”
e

’”
sin x olx -¢ t Z ( —l )

" 2
sin{x

EXAMPLES.

l . Integrate e
m Sin“xdx.

x see
2xdx.

(d [tan
-1
xdx.

( 8 ) freeman-” 1
xdx.

‘

(f ) f
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1 2 . Show that if u b e a rational integral function of x
,

a a
d“ 0121 1. ( 1326

fax udx—
ae
“
{u a—

d
+ a

d 2
a

where the series within the brackets is '

necessar ily finite .

[Tm m COLL. ,

1 3 . If u=fe
ax
cos

'

bxdx
, t =fe

ax
sin bx olx

,
prove that

b—1

a.

and that (a
2 b2)(u

2

1 4 . Prove that

fxm (logx)
”dx (logx)

”
x
m

(log

Also that
m 11 m

m .“
72 n-l ”(n— 1 )ln—2[x (log x) dx m + 1 m + 1
l

_
n<n—l><n ( a r

-I
n ;l

tan tan bx
,

where l stands for log x.

1 5. Prove that

( i. ) fe
u
cos

’b xdx

[e
w
sinnbxdx e

m
sinn ‘ l bx

1 6 . Evaluate fx2 log( 1 —x2)cix, and deduce that
l 1 1 8 2

a cos bx+nb sin bx x

a
2

77
953

72 7b 1 ax 71—2

a
g

n
Qbéb

z

fe cos bxdx.

a sin bx nb cos bx

a
2-l-7t

2b2

M bgfe
ax
sinn ‘ gbxdx.

a
2 ni b2

cos
"“1bx

[BERTRAND.]



CHAPTER V

RATIONAL ALGEBRAIC FRACTIONAL FORMS.

PARTIAL FRACTIONS.

ALGEBRAIC FRACTIONAL FORMS.

54. Integration of

1 1
and

a
z —x

Either of these form s should b e thrown into Partial
Fractions. Thus

xz

c

i
m

a
2 (x1a x4

1

a)



56 IN TEGRAL CALCULUS .

(Com pare th e form s of the results in square b rackets

with the r esult b efore tabulated for 1
viz .

,“2+ 43
2

1“2+x2 tan

dx
55. Integratlon of

M O
, bx+ 6

Let I :

we take th e form er or the latter arrangem ent ao

cording as b2 is or

Thus if b2
1

J bz —Aac
—

: 4ac

2
coth —1

2ax+ b

If 62 4am
,

f {38 1 1 4
2ax+ b

2ax+ b

These expressions differ at m ost by constants , but in
any given case a real form should b e chosen .
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56 . Integrals of expressions of the form
Ji m

-HI
ax

2
+bx+ c

can b e obtained at once by the following transform a

tion
pb

px+ q p ( 2ax+ b)
9

,

2a

ax
2
+ bx+ c 2a ax

2
+ bx+ e ax

2
+ bx+ e

’

the integral of th e first part b eing
20 2

2a
log (ax bx+ c) ,

and that of the second part b eing ob tained by the last
article .

[Th e b eginner should notice how the above form is

obtained. I t is essen tial that the num er ator of the

fir st fr action sha ll be the difier en tia l coefiicien t of the
denom inator

,
and that all the x

’

s of th e num erator
are thereby exhausted ]

x

[El
2x+ 4 2

Jx2+ 4x+ 5 2 x3 + 4x + 5

5) 2

57. Although the expression px+q m ay b e thrown
into the form b1?

2a

by inspection ,
we m ight proceed thus

Let

where A and M

.

ar e constants to b e determ ined. Then
by com paring coefficients ,

2ah =p, M+ k b=Q)
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EXAMPLES.

f
xdx

4 (x+ 1 )dx
x2+ 2x+3 3 + 2x—x2

2
xdx

x2+ 2x+ 1
'

3 f
x+ l

x2+ 4x+ 5
dx

58. General Fraction With Rational Num erator

and Denom inator .

Expressions of th e form where f(x) and ¢ (x)

ar e rational integral algeb raic functions of x
,
can b e

integrated by resolution into Partial Fractions.

Th e m ethod of putting such an expression into
Partial Fractions has b een discussed ln the Difier ential

Calcu lusfor Beginner s , Art. 66 . When the num er ator

is of lower degr ee than th e denom inator the r esult

consists of the sum of several such term s as

A A Ax B
and

Ax B

x a
’

(x ax
2
+ bx+ c

’ “33+ a)
2
+

And when the num erator is of as high or higher
degree than the denom inator we m ay divide out until
th e num erator of th e rem aining fraction is of lower
degree The term s of the quotient can in that case
b e integrated at once and the r em ain ing fraction m ay
b e put into Partial Fractions as indicated above.

Now any partial fraction of the form integrates

at once into A log (x a) .
A

(m—a)
’

1 A

r 1 (x

Any fraction of the form integrates into
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’
TIONAL FORMS. 59

Any fraction of the form
ACE-PB

has been dis

cussed in Art. 56 .

ax
2
+ bx+ c

And when any repeated quadratic factor such as

occurs in ¢(x) giving rise to partial
Ax+B

a fraction by the substitution x+ a =b tan 9 , by.

aid of

Art. 67 or Art. 83.

But it is frequently better to factoriz einto its im aginary conjugate factors x+ a+ th and

x+a—
zb, and obtain conjugate pairs of partial frac

fractions such as we m ay integrate such

tions of the form hich m ay
(x+ a

then b e integrated and the result r educed to real form
by aid of De Moivre

’

s Theorem ,
as in Art. 63 , Difi.

Ca lc. for Beginner s .

We have

x A Ex+ 0

(x x
2
+ 4

°

C) (x 1 ) 5 x.

A+B =Q
C—l ,

4A—0=O

x 1 l 1 x—4 1 1 1 2x 4 1

(x —1 5 x2+ 4
—
5 x—1 10 x2+ 4

+
5 x2+4
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and th e integral is
1 1 2

5
log(x 1 ) —

1
tan

0

x2

Ex. 3 . Integrate jd
.

Put

1 +ty
2 +y

°

saw 2

tar/ His

1 3
2

—ta
3

Hence th e fraction

( 1 +g)
2 1 3 1 1 1 1 1

Wu r
fl w 8 2W

and therefore
I l 3 l 1

(x 2 (x 8(x— 1 )

and th e integral is
1 l 3

4 (x 4g,
— 1 )

2

Ex. 4 . Integrate
(x 34

6

524. 1 )

Let x= 1 +g ; then
x2 1 2g g

?

(x l )
4
(x3 1 ) g

4

(2

We now divide out

1 + 2g+gj
2 by 2 + 3g+ 3y

2+y
3
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l . Integrate with regard to x th e following expressions
i vi . 31—3302

(x—aXx—b)

( ii . )
1

(vi l . )
2

(x a)(x b)(x e)

( i ii .) (viii )

( iv. )
“2+ 1

(ix. )
0““Xx ” W “ 0)
(x a1 )(x blxx 01 )

2 . Evaluate
dx -1

[MW [(ax
z -l-bx") dx.

fo
r n

e at .

(x+ 1 )dx

f(x
3 . Integrate

(x
2

a
'i
)(a

z b? ) (x
2 1 )(2x

2 1 )

Integrate
xdx x2 1

( i .)
x4 +x

2 l m
dx.

x2 1
(iv

x4 56
3 + 1

dx

(v.) [(x
2

a
2
) (x

4
a
zx2 a

4
)

' 1dx.

(vi . ) fa
z

a
2)(x

4
a
2x3 a

4
)

‘ 1dx.

x4 + 1
'
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5. Integrate
xdx

x3 1

(3502+ l )rlx
x(x

4 1 )

dx

(x

( lv
2

(vv ) (x 1 )dx

(x+ 1 )(x
2
+ l )

6 . Integrate

(i.)
d”

(x 2)
i
(x2 2x+ 4 ) x(x 1 )

2
(x
2 1 )

dx

( 1 +x)
2( 1

(x+a)dx
x
2
(x

( 1

dx

(x 1 )
2(x2

7. Evaluate [
I

x/ tan Hold andj
z

x/cot Hold.

00

8. Ob tain the value of
dx

.

cos
4x cos

2x s1n2x s1n
4x

o

9 . I t
' t COSxdx

uves lga e

( 1 sin x) (2 s 1n x)

10. Show that

; fl _ _

x4+ 8x
2—9

'

dx

- 1 )

dx

(x2+ 1 ) (x
2 - x+ 1 )

dx

x5dx

(x
2 1 )(x
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1 1 . Prove that
dx 271“ a + b

00
(x
2 i ax+ a

2
)(x

2 i bx+ b?) J3 ab(a
2

ab b2)
°

[COLLEGES y ,

1 2 . Show that the sum of th e infinite series
1 1 1 1

a a + h a + 2h a+ 3b

can b e expressed in th e form
1
t
at- 1

1 t
”

(a>O, b>0)

and hence prove that
t—t+a—

a
l
a+fa —

.
l
a+

[Oxronm



CHAPTER VI.

SUNDRY STANDARD METHODS.

60. Integration of Where

Case I. a Positive.

When a is positive we m ay write this integral as

b c
2
x + 2

a
x+

a

which we m ay arrange as

dx

b 2 bz —ao JR b 2
ae —b2

(CM-

d) a
2 (OH-

a) a
2

according as b2 is gr eater or less than ac
,
and the r eal

form of the integral is therefore (Art. 36)

1 ax+ b
h

“ 1

Ja

m s

J bZ—ao

according as b2 is or ac.

E

sinh 1
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In either case th e integral m ay b e written
logarithm ic form

1

JR
log (ax b J ets /act ?

th e constant log J b
2

ac b eing om itted.

a

Also since cosh 1
2 z sinh I

,

and sinh 1
2 cosh 1MZ

2
+ 1 ,

which form s therefore m ay b e taken when a is positive
and b2 is greater or less than ac r espectively.

61 . Case 11 . a Negative.

If in the integral a b e n egative

write a —A . Then our integral m ay b e written
dx

2b c

a

2
x

A
x-l

A

Ax—b l
—dx—b



or om itting a constant

1 ax b
c S

‘ 1
or

J bz ac

Also since cos
1
2 sin

we have
It thus appears that whenR ax2 2bx c

a negative ,

and th e real form is to b e chosen in each case.

We m ay write th is

_ _

1
_ f

dx

J2

1 . 4x-l-3

Jz Jes

(rejecting th e constant 5: logJ
—e

2 s/%
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This integral m ay b e wr itten

ME? to (x

1 4x—3
and therefore 1s

J2 J41

which m ay also b e expressed as

1
4 3x 2x2.

EXAMPLES.

1 . Integrate

2 . Integrate

3 . Integrate

4 . Integrate

62. Functions of the Form
Ax+B

b e integrated by first puttingAx+B into the form
Max b)+ 111 ,

which m ay be done as in Art. 57
,
either by inspection

or by equating coefficients ; we obtain
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‘

Sim ilarly, putting sinx s
,

‘

and th erefore cosxdx ds ,
we have
cos

2n+1xdx ( 1 8
2
)
”ds

siu3x n (n 1 ) siu5x ‘

n
sinm f lx

—S1n x- n
3 1 2 5

— 1 )

64. Product of form sia COSQx, p or 9 odd.

Sim ilarly ,
any product of the form sinpx cosqx

adm its of im m ediate integration by the sam e m ethod
whenever either p or q i s a positive odd in teger ,

What
ever th e other b e

For .exam ple, to integrate fsin5xcOS4x dx, put cos x=c
,
and

therefore sinxdx dc.

Hence fcos4x sin5xdx fc4( 1 c
z
)
2dc

cos
7x cos

9x

7 9
it

Again to integrate fsin
°

x cos
3xdx we proceed thus
Isin

%
x( 1 sin2x)d (sin x)
3 “1

6
8

5
8
sm x { g sm x.

65. When p+q is a negative even integer , the

expression Sinpx cosqx adm its of im m ediate integration
in term s of tan x or cotx.

For put tan x= t, and therefore sec
z
xdx=dt

,
and let

p+ q
—2n

, n b eing integral . Thus
inpx cosqx dx tanpx dt tp (1

\

+
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Sim ilarly ,
if we put cot x c

,
then cosec dx dc

,

and

inpxcosqxdx ot sinp+q+2xdc cq( 1
1do

cotq+1x
n 10

cotq+3x
n _ 10

cotq+5x cotq+2n l
x

g+ 1
1

g+ 3
2

q+ 5 q+ 2n
— 1

a result the sam e as the form er arranged in the Op
posito order .

Ex. 1 . Integrate

This m ay b e written

fcot
2x(1 cot2x)d cotx,

and the result is therefore
cot3x cot5x

3 5

It m ay also b e integrated in term s of tan x thus
cos

zx 1 tan
‘ 5x

1 tanzx tau x[sm fix
dx fta1 16x( )d

5

th e result b eing th e sam e as b efore.

Ex. 2

1. m g . g

[sec 9 cosec
°

0039 z jtan 0dtan 9= —gtan 9 : m gcot
f’O.

66 . Use of Multiple Angles.

Any positive integral power of a Sine or cosine
,
or

any product of positive integral powers of sines and

cosines
,
can b e expressed by trigonom etrical m eans in

a series of Sines or cosines of m ultiples of the angle ,
and then each term m ay b e integrated at once

' for

sin nx

n
and nxdx
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~ l + 2 cos 2x+

f

[(g cos 2x+ cos 4x)dx

sin 2x+-35 Sin 4x.

67. It has already b eenShown that when the index
is odd no such transform ation is necessary ,

thus in
the second exam ple

3
s1n x

foos3x dx f( 1 s 1n
2
x)d s 1n x=Sin x

3

Which presents th e result in different form .

m ethod we are now discussing will therefore
m ore especial value for the case of sinpx cosqx

n either p nor q ar e cold.

Ex. 4 . Integrate fsin
Sx dx.

Let cos x+ c s inn ; then

2 cosn + l , 2 cos nx g
"
+

9

2 t sin x=g 2 t sin nx =g
n

Thus
1 8

281 8 sm 8x (g y
l l l 1

a t(y +
g
8) 8 (g +

g
6>+ y +

y
4

6 g +
y
2

=2 cos 8x 1 6 cos 6x+ 56 cos 4x 1 1 2 cos 2x+ 70.
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Thus (cos 8x 8 cos 6x+ 28 cos 4x 56 cos 2x+ 35)

and [sin
sxdx

Ex. 5 . Integrate 8 111 63? cos2xdx.

Put cOS x+ Lsin x=g ; then
2 6t6sin6x 2 2cos2x

6)
l

[See Ar t. 68.

1 1 1 1
y
8+
y
8

+
y
4>+ 3/ +

y
2

2 cos 8x 8 cos 6x+ 8 cos 4x:+ 8 cos 2x 10
,

and sin6x cos
2x=

§

1
—
7

—cos 8x+ 4 cos 6x—4 cos 4x—4 cos 2x+ 5

whence
sin 4x Sin 2x

fs 1n6x cos
zxdx 4 4

2

68. N OTE . It is conven ient for such exam ples to r em em b er
that th e several sets of B inom ial Coefficients m ay b e quickly
reproduced in . th e following schem e

1

1 1
.

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 1 0 5 1

1 6 1 5 20 15 6 1 .

1 7 2 1 35 35 2 1 7 1

1 8 28 56 70 56 28 8 1

etc.
,

each num b er b eing form ed at once as the sum of th e one im

m ediately ab ove it and th e preceding one . Thus in form ing
the 7th r ow we have

etc. ;
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and in m ultiplying out such a product as

3/ y

occurring ab ove we only need th e coefficien ts of ( l
and all the work appearing wil l b e
coefficients of ( l —t)6 ar e 1 —20+ 1 5

coefficients of ( 1 ar e 1 5+ 9 5

coefficients of ( 1 ar e 1 —4 + 4+ 4 —4+ 1 ,

each r ow of figures b eing form ed according to th e sam e law as

b efore. Th e student will discover th e reason of this by per
form ing th e actual m ultiplication of a + bt+ ct2+dt3+ by 1 t

,

in which th e several coefficients ar e a
,
a + b, b+ c

,
c+d, etc.

Sim ilarly if the coefficients in ( 1 t)
4
( 1 t)

2 were required
,
th e

work appearing would b e
—2—3 —L

—1 —4 — 1 + 2 +L

and th e last r ow ar e th e coefficients required.

The coefficients here ar e form ed thus
1 —O= I

,
4 6 4 —6 —2

,
etc.

EXAMPLES.

1 . Integrate
sinzx

,
sin3x

,
sin4x

,
sin5x

,
sin6x

,
s iu7x

,
sin2”x

,
sin2n + 1x

,

doing those with odd indices in two ways .

2 . Integrate
sinzx cos

3x
,
Sin3x cos

3x
,
sin3x coszx

,
siu4x cos

4x
,
Sin4x cosfix.

sin2x cos
zx 1 1

3 . Inte rateg
cos

4x
’

s1n
4x

’

Siu
2x cos zx

’
s iu

4x cos
4x

7? 1l
'

1?

4 4. .z

4 . Evaluate f s 1n
‘
3x dx

,
cos

5x dx
,

cos
6x dx.

0 o

5 . Integrate sin 2x cos zx
,
sin 3x cos

3x
,
Sin nx cos2x

6 . Show that

fsin x sin 2x sin 3x dx cos 2x T
l
g

‘ cos 4x Q
1
;
cos 6x.

7.
. Show that

cos(m n)x cos(m n)xd _ _ T
m

.

f ( 1 ) fsm m x cos nx x
2 (m +n) 2 (m —e n) ,
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s1n (m n)x s iu(m n)xds1n m x sm nx x
2(m — n) 2(m + n)

Deduce from and ( iii ) fsin2m x dx andfcoszm xdx, and

verify th e ‘

r esults by independent integration .

INTEGRAL POWERS OF A SECANT OR COSEOANT.

69. Even positive integral powers of a secant

cosecant com e under the head discussed in Art. 65.

c
2
xdx tan x

,

Sec4xdx

tan x

sec
fixdx

tan x 2

and generally

se0
2n+2xdx Where t

Sim ilarly
sec

z
xdx cotx,

cosec
4
xdx (1 com )d cot x

cot3x
—cotx

3

( 1 tanzx)d tan x

tan3x

3

( 1 2 tanzx tan 4x)d tan x

tau3x tan5x
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"

and generally
c
3

cosec
zn i ' zxdx c

”O
I
—

g
where i cot x.

70. Odd positive integral powers of a secant or

cosecant can b e integrated thus
By differentiation we have at Once

(n 1 )Sec
”+2x n sec

nx
dx<tan x sco

n
ce

and

n+2 n
d

(n 1 )cosec x n cosec x
dx<COtx cosec

nx)

whence
(n 1 sec

n+2xdx tan
‘

x sec
"
x n sec

n
xdx

and

(n 1 ) cosec
n+2xdx cotx cosecnx sec

n
xdx

Thus as ecxdx log tan<—Z g),
osecxdx log tan

g)
,

we m ay infer at once th e integrals Of 1.

sec
3
x
,
sec

5
x, sec

7x
,

cosec
3
x
,
cosec

5
x
,
etc.

,

by successively putting n : 1
,
3
,
5
,
etc. ,

in the above

form ulae.

Thus fsec3x dx 5tan x sec x-l 5log tan (34

[sec5x dx==—
4
1 tan x sec

3x+gfsec3x
—
i tan x sec

3x+ i§ tan x sec x+ § log
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ftan
‘l
xolx=ftan2x(seczx 1 )dx

tau3x
tan x x

,
etc.

By continuing this process we shall evidently ob tain
2n—1 2n—3 2n—5

ftana dx
tan x tan x

+
tan x

Qn 1 2n 3 Sn 5

x+ ( 1 )
”
x
,

2n—2 2n—4

ftan
2n+ lxdx

tan x tan x
2n—2 2n—4

2
x
+< l )

“lo'

g secx.

Sim ilarly
cotnxdx 2

x(cosec
2
x 1 )dx

cot” 2xdx
,

whilst otxdx log sin x
,

and ot2xdx (cosec
z
x 1 )dx cotx x ;

and therefore we m ay thus integrate
cot3x

,
cot4x

,
cot5x

,
etc.

Hence any integr al power of atangent or cotangen t
adm its of im m ediate in tegr ation .

74. Integration of
6 cosx

’

We m ay write a+ 6 cos x as

Q3

a<cosgg—
3

sin235) b<cos2§



SUNDRY STANDARD METHODS .

(a b)cos
2

g (a b)sin
2

g,

(a b)cos
2

1
2
x

—

2
sec
é
ax

a+ b fi
’

a b
tan “

2
'

CASE I . If a I) this b ecom es

2

J a
z 5g

tan 1

2 tan
“ 1
2 cos

we m ay wr ite this as

a b
2

a 1)
tan

a b
2

a b
tan

79
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b+ a cos x

CASE II . If a b
,
writing th e integral in th e form

d tan2

in place of th e form (1 )

dx 2

a 6 cos x b a

1

2
log

tanh 1

2

or , sm ce 2 tanh l
x cosh 1

1 21

2 ,1 2

we m ay sti ll further exhib it th e result as
b a

cosh 1 b a

COSh
_ l
b+ a cos x

a+ b cos x

1 11 this case by Ar t.

1
10

1

2
?

W
I

S



SUNDRY STANDARD METHODS.

We therefore have

1
cosh

“ 1
b+ a’ cos x

Jbz _ a
2 a b cos x

These form s are all equivalent, but one of the r eal
form s is to b e chosen when the form ula is used.

75. The integral of 1
m ay b e im

a+ b cos x+ c siu x
m ediately deduced,

for

b cos x+ c sin x b2+ c
z
cos(x

and therefore the proper form of th e integral can at

once b e written down in each of the cases a greater or

dx dx

+ 3 00s x+4 sin x 1 3 + 5 cos(x—a)
1

J1 32 _ 52 1 3+ 5 cos(x—a )

cos(x—a)

(where tan a g)

E . I . C. F
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76 . The integral m ay b e easily deduced
by putting

7T
—+ y ,

dx dg
a+ b sin x a+ b cos g

’

and therefore its value m ay b e written down in both
th e cases a 2 6.

Of course it m ay b e investigated also independently
by first writing a+ 1) sin x as

a<coszg sin2
5

5) 2b sin
2
cos3

2
55<a tan

5

5+ a tanfi).2

Th e integral then becom es

d tan
x

2
’

(tau
m

—l—
b

) +
a

2

b

a

and two cases arise as b efore .

77. The integr al m ay b e sim ilarly
treated.

dx

a<cosh2§ sinh2g) b<cosh 2g sinh 2
x

>
a<tanh Q)



S UNDRY STANDARD METHODS.

2
1 f b> a

,
this

J bz a
2
tan

“ 1

which further reduces to
1

1
6 a cosh x

J UL -a
? a + b cosh x

’

and if b a the integral is
2

J et? 62

which further reduces to
1

_ l
b+ a cosh x

J a
z _ b2

Cosh
a+ b cosh x'

tanh 1

78 . S1m ilar ly th e integrals of

1
and of

1

a + b sinh x a + b cosh x+ c sinh x

m ay b e easily obtained.

EXAMPLES.

1 . Integrate
sin x cos x

2 . Integrate (i. )

a sin x+ b cos x)

dd
3 . I t tn egra e

a + b tan 9

a sin 9+ b cos 0
c sin 9+ e cos 0

83
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4 . Prove that
,
with certain lim itations on th e values of the

constants involved
2 ar e cos

and integrate

dx

sin x) cos x
’

[5 4 cos x

f
07x

cos a cos x
’

cos a cos x 1

cos a cos x

(viii ) prove cosec 9

dx

x — a +Vx—b
6 . Integrate (i. ) jJ

dx

sin x sin 2x
8 . Integrate j

1 + cos x

f

[2J2+ cos x+ sin

dd



https://www.forgottenbooks.com/join


86 INTEGRAL

26 . Integrate f
27. Integrate

28 . Integrate f
x
dx

, [E
m x

dx
s1n x

dx
,
and prove that

s1n 2x Sln 3x s in 4x

2
si1 1 (x —

5

7
—
T

)
5]

s1n x
dx= sin

7r
log

s1n 5x 5
s iu (x

2

5
3 )

w

)s 1n x
0 7T J‘ 5

— sm — log
5 71

[TRIN. COLL , 1892 ]



CHAPTER VII.

REDUCTION FORMULAE.

REDUCTION FORMULAE .

79 . Many functions occur whose integrals are not

im m ediately reducib le to one or other of the standard
form s

,
and whose integrals ar e not directly obtainab le .

In som e cases
,
however

,
such integrals m ay b e linearly

connected by som e algeb raic form ula with the integral
of another expression

,
which itself m ay b e either im

m ediately integrab le or at any rate easier to integrate
than the original function .

For instance it will b e shown that can

b e expressed in term s of and this latter
itself in term s of which b eing a standard

form the integral of m ay be inferred.

Such connecting algeb raical relations are called
Reduction Form ulae .

80. Th e student will realise that several reduction
m ethods have already b een used. For instance th e



8 INTEGRAL CALC
’ULUS.

m ethod of Integration by parts of Chapter IV. ,
and

the form ulae A of Art. 70. It is proposed to con sider
such form ulae m ore fully in th e present chapter , and
to give a ready m ethod for th e reproduction of som e

of the m ore im portant.

81 . On the integration of xm - lXP where X stands

for anything of the form a + bx
”

.

In several cases the integration can b e perform ed

directly.

I. If p be a positive in teger ,
the b inom ial in

xm
“1
(a+

expands into a fin ite series , and each term is integrab le .

Next suppose p fractional g, r and 8 b eing integers
and 8 positive .

II . Consider th e case when 11; is a positive integer .
Let

m
m -lXEdw {C

m - 1
2
7
°

+ s - 1

b

and when (

g is a positive integer , this expression is
dir ectly integrab le by expanding th e b inom ial and

integrating each term .

m
III . When is a negative integer , the expression

Z
r+8 —1
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Ex. 2 . Integrate fx
’
l

‘

Ya
i‘ x3 )

idx.

771,
Here n= 3

, p
=§ and p is 1nteger .

n

1

Th e integral is x2( l

Let 1 + a
3x

“s
2
2
,

3§dx 22 dz
,

and th e integral b ecom es

2

3a3fa
6
2
2dz § a

3

/(Z2 1 )
2
dz ,

which m ight b e put into partial fractions . If
,
however

,
2 b e put

= sec 9, th e process of putting th e expression into partial frac
tions will b e avoided and th e final integration m ay b e quickly
effected (A

r t.

82. Reduction form ulae for x
m

Let a+ bx
n=X then x

m
“ 1Xd can b e connected

with any of th e following six integrals
1X? 1dx

,

1XP+ 1dx
,

n 1Xd
,

+71 1Xd ,

—n —1Xp+ 1dw
,

+n lXp
—ldw

,

according to th e following rule
Let P where A and p. are the sm aller

indices of x and X r espectively in th e two expressions
dP

whose integrals ar e to b e connected. Find “

(fi
n Re

arrange this as a lin ear fun ction of the expr essions

whose integrals ar e to b e connected. Integrate , and
th e connection is com plete .



REDUCT] ON FORMULAE . 9 1

Ex. 1 .

i

COnnect fx
m “ 1X1’dx with fx

m ‘ lXp ' ldx.

1dX

dx

W
rit—1X1 ) +pbnx

m +n- 1Xp—l

—
m x

m " 1XP +pnx
m ‘ 1

(X a)X1’ 1

[Note th e rearrangem ent as a linear function, etc.

,

(m +pn)x
m " 1Xp apnx

m “ 1Xp ‘ 1
.

Hence P (m apujx
m ‘ lXP ‘ ldx

,

fx
m “ 1Xd = m

p “P”

jm +pu m +pn

m x
m ‘ lXP x m P “

The advantage of this reduction is that the index of

th e usually troub lesom e factor XP is lowered and by
successive applications of th e sam e form ula we m ay
ultim ately reduce th e integral to one which has b een
previously worked,

or which can b e easily obtained.

5

Ex. 2 . Thus
,
for instance

,
to find [(x2 + a

2
)
7
‘
i

dx we m ay con

nect this integral with [(x2 + a
2
)
i
dx

,
and this again with

and this last is a standard form .

As the reduction is used twice
,
we wil l connect

[(x
2

a
2
)
%
dx with [(x

2

dP

dx
a
2
)
7
+ 72x

2<x2

(x
2

a
s
)
ti
+ n(x

'

3
a
2

a
2
)(x

2 “git-4
[Note th e preparatory step which m ight beperform ed m enta lly ]

= (n 1 )(x
2

a
z
)
i

na
2
(x
2

[which is now r ear ranged as a linear function, etc.
,
etc.
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Integrating
,

P (n 1 )f(x
2

a
2
)
%dx—na2f(x

2
-l
dx

d 2 2
i

i“ =x(x
2
+“iii 2 2an j(x + a ) dx (x + a ) dx

Putting n 5 and n 3
,

2
5

[(x
2

a
2
)
%dx

x(x
ga

2

f(x
2

a
2
)
%
dx,

[(x
2

a
’fidv “x2I if; a

z

ftv
z

ch
i
ck”

,

and f(x a
2)
i
dxJ ““28

+ 2 . s inh- Iii .

2 2 a

Then

[(x
2

a
?
)
ivdx _

x (x
2

~

g
a
?” 5

a
2
~v(x2 a

zf
i

I
5 3 5 3

a
fi
sinh

‘ l '

C

—i.

2a.

Ex. 3 . Calculate th e value of f m Qa v—xzdx
,
m b eing a

0

positive integer. We shal l endeavour to connect

fm 2ax xzdx with fx
m _ 1

~/2ax xzdx,

m s 2 m —e s

fx (2a —x) dx With [x ( 26.-m ax.

l 3
7

(2a—x)
72
according to th e rule, then

(m %)x
m —i
(2a igx

m + ii
(2a x)

7i

(2m l )ax
m _i
(2a x)

i
(m 2 )x

m +7i
(2a x)

Hence

i
(2a x)

7idx

i
(2a x)

’i
(2m 1 ) afx

m _ 7i
(2a x)

idx
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farm-115100100
afii

ya
m —"XP“ m n

4 '

773- 1 p m —n—l p +l

[x X dx
bn( 1 )

—

!f 1 )
x X dx

5 . fx
m —IXpdx _

m p

x
m +n—1Xp—ldx.

fi® fi t

x
m + 1 ( log x) ? p _ 1m p m I)6 . [90 (log x) dx 1 m lfm ( log x) dx.

Integrate out x
m logx, x

m

(log x)
2
,

x)
3

.

cases

m = l
,
m = 2

,
7n= 3

,
and their num erica l values when th e lim its

of integration ar e 0 and 2a .

83. Reduction form ulae for sinpm cosm dae.

A sim ilar rule m ay b e given for a reduction form ula

ia cosqa: dx.

This expression m ay b e connected with any of th e

following six integrals :
np

2
a; cosqxdw Sim cosqacdx

,

npx cos?
2
m dos, inpoc cosq+2x elm

,

”
a: cosq

+2wdoc sinp+2x cos? elm
,

by th e following rule
Put P = sin

k+ l
x cos x where k and

,
u

_
‘

are the

sm aller indices of sin ce and cos x respectively in th e

two expressions whose integrals ar e to b e connected.

Find and r ear r ange as a linear fun ction of the
den

expr ession s whose integrals ar e to b e connected.
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Integrate and th e connection is effected.

Ex. Connect the integrals
sni px cosqxdoe,

s 1np
" 2
x cosqx olx.

Let P sin cos
‘I+ 1x

,

dP
(P l )sinP

—2
x cosq

+2x (q 1 )sinp.i
'

cosqx
dx

(p 1 )sinP
" 2
x cosqzdl singx) (q 1 )s inp.i

'

cos%

(p 1 )sinP
—2
x cosqx (p q)sin

px cosqx

[Note the last two lines of rear rangem ent as a linea r function of

sinpx cosqx and sinp
‘ 2
x cosqx] ,

P = p 1 )jsni p
—2
x cosqxdx p g)fsinpx cosqxdx.

sinP
—l
x cos

‘I+ 1x
+
1 ) 1

shi p—2
x cosqa

' dx.

It will be rem em b ered
,
however

,
that in th e case

where either p or q is an odd integer th e com plete
integration can b e effected im m ediately [Arts 64 ,
The present m ethod is useful in the case where p and

q ar e both even integer s .

Hencefsin
px cosqxdx

EXAMPLES.

Connect th e integral [sinpx cosqx dx with

1 . fsinp +
2
x cosqa

'dx.

2 . jsia cosq
“2
xdx.

3 . fsinpx cos
‘I +2x dx.

4 . fsinp
“ 2
x cosq

+2x dx.

5 . fsinpwx cosq
‘ z
x dx.
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Em ploy this form ula to integrate s in4x
,
sinsx

,
sin% .

7. Estab lish a form ula of reduction for cos
”
x dx .

sin4x 1
8. Integrate sin4x coszx, 2

—
7

cos x siu
4
x cos

2
x

84. To calculate the integrals

sinnwdx and On cesnx dx.

Connect inns: doc with sin" 2
a dac.

Let P cos a: according to th e rule ; then
dP

elm (n 1 )sm
” 2

56 cos% sin
n
ce

(n 1 )sinn 2
93 n sinner)

,

inna: da: sin” 2
a doc.

Hence since sinn
' l
cc cos ec vanishes when n is an

integer not less than 2
,
when and also when

77
.

we have
2
,

n — l n —3

n — l n —3 n —5

n

.

n — 2
o

n

even this ultim ately com es to

n— l
.

n —3 5 3

n n 4
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85. To investigate a form ula for
Ea
—

sin1’t9coq dO.

Let this integral b e denoted by f(p, q) then since
sinp

' lficosq
‘ l‘ lfi

r) q

we have , if p and g b e positive integers , and p be not

less than 2

inPGcosq6d0 +
29 1

in?p 29cosq9d6 ,

2
,

CASE I . If p be even 2m
,
and o

r also even 2n
,

2m — 1

2m + 2n

(2m 1 )(2m 3)
(2m + 2n)(2m 2n 2 )

(2m — l ) (2m — 3) 1
KO.

f (2m ,
2n) fl2m 2

,
2n)

f (2m 4
,
2n) etc.

291 “
2771 — 1 2n—3 1 7T

f(O, 2n) [
0

cos (9 039
2n 2n— 2

-

2 2
.

3 5 .

Thus f (2m ,
276)

2 . 2

CASE II . If p be even =2m
,
and q colol = 2n —1

,

f (2m ,
2n 1 )

Qm “ 1

(2m 1 )(2m —3 ) l
(2m +2n 1 ) (2m +2n

2”

‘
l

'

‘

2
'

272—1 _
272 —2 272—4

_
2

and f (0, Zn 1 ) cos 9 d9
2n — 1 2n

5 (2m + 2n l )
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CASE III . If p be odol = 2m —1 and q even

we obtain Sim ilarly
(2m2 - 1 2fl m

— 1 )

This m ay also b e deduced at once from Case II . by putting

‘
R
"

sinpOcos ‘10dd f
o

cos f
’
ct sinq ( 1 )dqfi

1?

[
I

sinqcbcospd) old) ,

so that M )
. p)

p be oclcl =2m —1
,
and q

2m 2
1 l

2m + 2n 2
f(2m 3, 277.

(2m —2x2m
( 2m + 2n

2n

and f( 1 , 2n 1 ) sin 0cos d0 [ 2

00 8
2710

[2 . 4 . . (2m/2f ‘
m n

2 . 4 . 6 . . (2m + 2n — 2 )

86. Expression in a single rule.

These four form ulae m ay b e expressed under one

rule as follows :
Let F(n + 1 ) b e a function defined by the relations

I
‘

(n 1 ) nP(n ) , F( 1 ) 1
, J r .
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These relations will b e found to sufficiently define
I

‘

(n + 1 ) where n + 1 is either an integer or of th e form
—1—1
2

76 b eing a positive integer .
For instance

,

I
‘

(6 )
— 5 . 4 . 3 . 2 .

F(L1 ”3 -1 21
1

03)
9

_ 2 1
2

.

s £1 2
5. a i f”

This function is called a Gam m a funct1on
,
but we

do not propose to enter into its properties further
here.

Th e products — 1

6 2 11.

which occur in th e foregoing cases of sinpGcosqeclO

expressed at once in term s of this function .

—1 2n—3
.

2n — 5

2 2 2 2

so that —l )
2”

Jr 2

I
.

(
2 11 -1-2

)
2n 2n—2 2n— 4 2

2 2 2 2 2
’

Case I .

2

f e w2 2
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“

87. Th e student should
,
however

,
ob serve (as it has

b een pointed out previously) , that when either p or q
or both of them ar e oclol in teger s, the expression
sinpGcosqt) is directly integrab le without a reduction
form ula at all .

For instance
,

fsin
fificos

3
¢9 d0 fsin

60( l sin29)al sin 9

and f sinfibl cos30dd

0

Sim ilarly,
g
sin50cos26 d9 f

o

coss l 2 cos29+ cos
4t9)d cos 9

0 1

cos

'

39 cos
50 2E 3 5 7 1

5 £ 5
'

But when p and q are both even and the indefinite
integral required,

or if the lim its of integration b e

other than 0 and 1
2

1

1we m ust either use th e reduction
form ula of Art. 83 or proceed as in Art. 67.

EXAMPLES.

Write down th e values of
7?

2 2

1 . f s 1n
2x clv

,
s lu

4
m alt

,
s1n8.vdx

,

0

‘H
'

2
"

2
”

2 . f s 1 11
6
.v cos

4
.volv

, f sinfix cos
5
.vdx

,
s1u

5v cos
6
.vdx

,

0 o

2

f siu5.r cos5.vdx.

0

If 0, represent th e product 1 3 5

E , represent th e product 2 . 4 6



Lwn—l lgt—l
(3) f sin2

‘m 1dcos
2"" 1ddd

l zn+n—1

4 . Write down th e indefinite integrals of

fsin
7dcos ddd, fsi117dcos

3ddd,

sinm
l ' ldcos

gm ddd.

fsin
7dcos5ddd,

[3 111
79 cos2ddd, [sin

Gd00849 dd.

Evaluate
5 . [

I

sm5dcos2ddd, sin4ddd,

sin7ddd.

6 . f cos
Z2ddd, cos

33<f>dd) ,

0

7. Deduce th e form ulae of Ar t. 84 for

EXAMPLES.

1 . Prove that

singdcos4ddd,

cos
43cf>sin

26<l>dgb.

nxdx from th e

(a) fcos
fin

¢ d<f> z éz tan cbcos
n

¢

( b) 18 9 0
27” l -

n

tan (1) sec
” 1

4)
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2 . Investigate a form ula of reduction applicab le to
fxm (1

when
.

m and n ar e positive integers
,
and com plete th e in

tegratlon if m =5, [S
'

L JOHN ’
s COLL , CAMB . ,

3 . Investigate a form ula of reduction for

f
x
2n + 1dx

( 1 w e?

and by m eans of this integral show that
1

+
1 1

+
l . 3

.

1 1

2n+ 2 2 2n+ 4 2n+ 6 2n+ 8

Sum also the series
1 1 l 1 5 1

-o o 0 ad 0

2u+ 1
+
2 2n+ 3

+
2 . 4 2n+ 7

m f

[MATH. TRIPOS,
4 . Prove that

271 4-1 272 1 a

2" l

2
x
2 2 d

£ 2
36
2 2 2

f
“

x
2 2 dx.(a + x

2n+ 2
<a + +

2n+ 2
a (a

n_
dd“ 271 — 3

5 . If (Mn) 2 1

/ prove qS(n) —
2n _ 2

(Mn
0

6 . Find reduction form ulae for
(a ) fx

”

(a

2p+ l

(B) [M e m e 2 dx
.

and ob ta in th e value of [x8(x3 [Com m as CAMB. ]

7. Find a reduction form ula for [eu cos
n
xdx

,
where n is a

pos itive integer
,
and evaluate

[OXFORD ,
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1 4 . Show that
‘
R

’

7
.

m (2m — 2 )(2m

[
0

8m 9 008 ddd
(4m — 1 )(4m

m b eing a positive integer. [Oxronm

1 5. Prove that if
Im

,
.n jcos

m
x s1n 72xdx

,

(m n)Im n cos
m
x cos m e m l m q

, J

I 2
2 2 23 2

[ m
’ [BERTRAND. ]

If I m
,
n

: [cos
m
x cos 7ixdx

,

cos
z
nx d

(
cos

m
x

)+
m (m 1 )I 2

,
rove that Ip m

’
n

m
2 dx cos m

2
72
2

n
)

and Show that
_ 1 )[ m n] —

m (m I m n]l: 0 772
2 —72

2
0

’

f cos
m
x Sin nx dx

0

1 mprove that um n um q
’

m + n 772 4-77.

Hence find the value (when m is a. pos itive integer) of

f cos
m
x sin 2m x dx.

0
[73

Prove that cos
"
x cos 72x dx

[BERTRAND. ]

If m +n b e even
,
prove that

r

9 lm 7T

f COS 0COS nddd

0
2m + 1 m + n

‘
772—72

2 2

[COLLEGES , 1 882 ]
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20. Evaluate th e integral
1?

7

COS m dx.

[COLLEGES,

If f cos
m
x cos nwdx b e denoted by f (m ,

show that

— 1 1
m _ n

f(m 72+
m

”

+n
f (m m

[OXFORD ,

Pr ove that if n b e a positive integer greater than unity,
7!

‘

2
'

f cos
n ‘ z

x sin nxdx

SlIl nx
d

sin a:

0

23 . Find a reduction form ula for th e integral f day.

24 . If n where m is not less than n
,
and m , n

are either b oth odd or b oth even integers
,
show that

(n l )(n 2)um ,
n +m

2
um

,
m (m 1 )um -2

,
n 2 O.

25. If

A s iu x
(a 6 cos

1 b 3)a 72 — 2 1
wh Aere

n — l a
2 — b

‘

1 ’ — 1 ) (a
2—b2) n— l a z - b"

show that Bun—1 (jun—23

if
7r

( 1 e
z
s in2¢)

3

( 1 e
2
)
-g 1 6

,

6 b eing less than un ity. [ST. JOHN’

s COLL 1 8821 ]

Show that

can b e integrated in finite
term s when m is an integer.

from a form ula of reduction of th e form
A U” B 0 121 - 2 sinm + 1x(a 6 cos x)

“

and determ ine th e constants A
,
B

, C
'
.



108 INTEGRAL CALCULUS.

28. Find a reduction form ula for th e integral
x
m dx

( log [Oxronm

29 . Find a reduction form ula for
I

“
aim

30. Prove that if X=x2+
'

dx+ a
?

3 1 . Find reduction form ulae for
(a ) ta11h”

x dx.

a +ocos x+ c s1n x)

(7) fs1n"x
Estab lish th e following form ula for doub le integration byparts

, u and 7) b eing functions of x
,
and dashes denoting differ

entiation and suffixes integrations with respect to x
uv(dx

2
noz 2 25173 3a

”
v4 414 v

5

1 ) dx ulnlvndx.

[a ,
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l 1 0 INTEGRAL CALOULUS.

Puttm g c + e=y ,

we have

and I b ecom es 2 which
,
b eing one of

th e standard form s i s im m ediately integrab le .

Ex. Integrate I f
dx

1 1

y
— l y+ 1

y+ Jx+ 2+1

90. The sam e sub stitution
,
viz .

, J y z

y will suffice
for th e 1ntegrat10n of XJY when q5(cc) 1s any

r ati ona l integr a l a lgebraic function of as
,
and X and

Y ar e each linear .

Writing =
y, we have
eh

m
Qdy and x=y

z —2
,



MISCELLANEOUS ME THODS AND EXAMPLES. 1 1 1

x4 8y
6
+ 24y

4 32y
2
+ 1 6

50—1 y
2 — 3

12
y
“5y

4
+ 9y 5

(by com m on division) .

so that

5 3
7

y + y ”I '

m/3
0
°°

y+J3

1 “CM —"w
+
27 3

9 1 . CASE H . X linear
,
Y quadratic.

Th e proper sub stitution is
Put X 1

( la;

Putting aw b
y}

,

we have
,
by logarithm ic differentiation ,

adm dy
ax+-b y

cw2+ em+f é<§
2Ay 2

5y+
0

,
say .

9

Hence th e integral has b een reduced to the known

form I

which has b een al ready discussed.



1 1 2 INTEGRAL CALCULUS.

Let 30+ 1 =y
“1

,
then

COS

92 . It will now appear that any expression of the

can b e integrated, ¢ (a3) b eing any rational integral
algeb raic function of cc. For by com m on division

¢ (w)we can express
ace b

in the form

M
n n —lAw +Bcc

+L b eing the quotient and M th e

rem ainder. We thus have reduced th e process to the
integration of a num b er of term s of th e class

and one of th e class

Th e latter has b een discussed in th e last article , andintegrals of th e form er class m ay b e ob tained by the
reduction for m ula

az
” 2r 1 6

r e 2r c

-

;F(r —1 )—
T 1w
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1 1 4 INTEGRAL OALOULUS.

and
'

I b ecom es

1

Ay
4
+By

2
+ O

y
4
+By

2
+U

can b e thrown into partial fractions

Ry u Xy M
,

ay
2
+fiy+ y

and each fraction is integrab le by foregoing rules .

94 . It is also evident that the sam e sub stitution
m ay b e m ade for th e integration of expressions of the

form
9596 )

where is rational
,
integral and algeb raic ; for

Ay
4
+By

2
+ G

the rules for partial fractions , m ay b e expressed

form which by div ision
,

tan
" 1 J 3



MISCE LLANEOUS METHODS AND EXAMPLES . 1 1 5

EXAMPLES.

Integrate th e following expressions
1

x2 .r 1

x
2 x 1

x
2 1

1

95. CASE IV. X and Y both quadratic.

We do not propose to discuss in general term s

m ethod of integration of expressions of the form

where X and Y ar e both quadratic and (am) rational ,integral and algeb raic , as it is b eyond the scope of

the present volum e. We m ay say ,
however

,
that the

proper sub stitution for such cases is y,
and th e

student will glean the m ethod to b e adopted from th e

following exam ples .

*

Putting V
”
2 62

x2 a
2

1 cly x (a2 bz )w

y elm
—

xz -i—bz x
2
+ a

dy (a
2 62)x

dx
(x
2

The student m ay refer to Greenhill’s Chapter on th e Integral
Calculus for a general discussion of th e m ethod.



1 1 6 INTEGRAL US.

2 2
1

Thus I b ecom es
a

lag.

(a
2 b~

)x

so that x2
62
T
“ZZZ/ 2

,

a
‘ 1

62
x2 a

2

y
” 1

Thus I reduces further to

cos
“

1

as“) 2 a
2

(a b) .

If a b
,
we m ay arrange I as

h
-l fflcos

b
2

cosh- 1 5
; $2122 (a b)

(x 1 )dxEx. 2 . Integrate I j(2x2 — 2a'

+ 1 ) N/s 2x + 1

Putting

1 dy 350 — 1
g

250— 1

y dx 3x2 — 2x+ 1 2x2—2x+ 1

x(x—1 )
2x+ 1 )

we ob tain

Th e m axim um and m in im um values 3x12 and y22 of ar e given
by and and ar e respectively 2 and I

,
so that for real

values of x
,

m ust b e not greater than 2 and not less than 1 .
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1 1 8 IN TEGRAL CALCULUS .

a + b sinw+ c cos a:

a
1
b
l
sinx c

l
cosw

This fraction can b e thrown into th e form
A B(bl cos cc elsin cc)

(a 1 b
l
sin cc c

l
cosw) (a 1 b

l
sin a; c

l
cos at )

where A B
,
C ar e constants so chosen that

A Ca
1
=a

,

—Bc
l + Cb1 b

,
Bb

l
-i Col

: 0
,

and each term is then integrab le .

96. Fractions of form

97. Sim ilarly th e expression
a +osin w+ c cos x

(a 1 b
l
sin a: c

l
cos w)

”

m ay b e arranged as

A B (b1cos .cc elsin 93)

(a 1 b
l
sin a: c

l
cos as)

”

(a 1 b
l
sin as elcosw)”

4.

n 1 ’

(a 1 b
l
s
r
n as c

l
cos x)

and the first and third fraction s m ay b e reduced by a

reduction form ula [Ex . 25
,
Ch . VIL] , while the second

is im m ediately integrab le.

98 . Sim ilar rem arks apply to fractions of th e form
a + b sinh a3+ c cosh a3 a+ b sinh w+ c cosh w

a
1
b
l
sinh w c

l
cosh cc

’

(a 1 b
l
sinh a; c

l
cosh cc)

”

99. Som e Special Form s.

It is easy to show that
sin (c



MISCELLANEOUS METHODS AND EXAMPLES. 1 1 9

sin zac

sin (a: a )sin (cc b)sin (az c)
sin za

whence sin x alas

sm (00 a)s1n (cc b)s1n (a
'

c)

2
sm a

log sin(m a ) ,
sm (a o)sm (a c)

singcc clw

sin(a a )sin (a: b)sin (cc c)

sm
z
a

2
sin (a o)sin(a c)

100. More generally Herm ite has shown how to

integrate any expression of the form

f( sin 9 , cos 9)
sin (O a

1 )sin (9 . sin ( 9 an)
,

where f(w, y) is any hom ogeneous function of w
, y of

n — I dim ensions .

For by the ordinary rules of partial fractions
flt, 1 )

( t ( t—an) (d l
— a

zxa l —a
s)

which m ay b e wr itten
"

if flan 1 ) 1

ar . (ar an) t a ,

(th e factor a,
—ar b eing om itted in th e denom inator

of the above coefficient) .
P roc. Land. Math . Soc. , 1872 .



1 20 INTEGRAL CALCULUS.

Putting t=tan 9 , a
1
tan a l ,

a
2
tan 012 ,

etc.

theorem b ecom es

f( sin 6 , cos 9)
sin (O a

1 )sin (0 ( 1
2) sin(O an)

m ” f( sin a r , cos on.) 1
Z
r z l sin(ar (1 1 ) sin(ar an) sin (C ( I r )

.

f(sin 9 , cos 6)
sin (O d l ) sin (O an )

sin ar , cos a

T=I Sin (ar ( 1 1 ) o o o Sin (a r an

EXAMPLES.

Integrate
sin .r

4
cos nx cos na

0

71 71 cos x cos a
sin (.t 6 6

2
cos 2x cos 2a

5
sin 2x sin 2a

cos x—cos a sin x—sm ut

3
cos 3x cos 3a

6
cos

z
x

cos x cos a sin x(sin
zx sin a

GENERAL PROPOSITIONS .

1 01 . There ar e certain general propositions on

integration which ar e alm ost self evident from th e

defin ition of integration or from th e geom etrical
m ean ing. Thus
102 . I. (m)dx :

for each is equal to gl (b) if ¢ (a3) b e th e differ
ential coefficient of (Mac) . Th e result b eing ultim ately

See Hob son
’
s Tr igonom etry, page 1 1 1 .
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1 22 INTEGRAL CALCULUS.

105. IV .

“
am- Am

a z a —
y ,

clx —cly ;

a z a
, y=0,

y=a .

Web—wow

sew—
axle (by 1 1 1-1

“
(pm- m)dx (by

Geom etrically this expresses the ob vious fact that ,
in estim ating the area OO’

QP between the y and w

axes
,
an ordinate O'

Q,
and a curve PQ,

we m ay if we

like take our origin at O
'

,
O

'

Q as our Y-axis
,
and C

’

X
as our positive

.

direction of th e X-axis .



MISCELLANEOUS ME THODS AND EXAMPLES. 1 23

106 . V . ¢(a3)olx ¢ (cc)olcc q5( 2a m)dx.

For by II.

ands
o

and if we put 2a

we have dx dy.

and when cc a
, y a

,

when a: 2a
, y 0.

Thus ¢<2a M y

¢<2a yfly

a

¢( 2a m)dx.

Hence ¢(oc)dm ¢(90)0lzc
a

¢( 2a m)dx.

We leave the obvious geom etrical interpretation
th e student.

107. VI . Plainly if ¢(9c) be such that

this propos1tion becom es

and if ¢ (cc) b e such that ¢(2a —cc) =

¢ (cc)clx 0.



1 24 INTEGRAL CALCULUS.

Thus since si1 1"x siu"(7r en) ,

f
r

sinl‘xdx 2 sin"xdx

0

cos
2n + lx cos

Q"+ 1 (W x) ,
cos

gn
x cos

2"
(7r x) ,

77

cos
Q’H I

xdx O
,

cos
2n
xdx 2f cos

gn
x clan

00

We m ay put such a propos ition in to words, thus
To add up all term s of th e form sin”

x olx at equal intervals
b etween 0 and 71 is to add up all such term s from 0 to gand
to doub le. For th e second quadrant s ines ar e m erely repetitions
of the first quadrant s ines in th e reverse order. Or geom etri
cally, the curve y= sinn

x b eing sym m etrical about th e ordinate
— 7

2
5
,
th e whole area b etween 0 and 71 is doub le that b etween

0 and
7

5
.

Sim ilar geom etrical illustrations will apply to other cases.

108 . VII . If ¢ (a3)

¢ (w)dx n gb(w) 0lx.

For
,
drawing th e curve it is clear that it

con sists of an infin ite series of repetitions of th e part
lying b etween th e ordinates CP O (m=0) and N

1
P
1

and th e areas b ounded by th e successive
portion s of th e curve

,
th e corresponding ordinates and

th e w-axis ar e all equal .

Thus ¢ (90)clzc t
’
B)clcc etc.

7
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1 26 INTEGRAL CALCULUS .

Hence /
0

(2ay y
2
)
%

(71 vers
2a

71
'

“n

(2ay y
2
)
%dy I .

Hence I 3r (2ay y
2
)
7
dy.

0

Putting y
=a ( 1 cos dy=a sin 0dd,

1?

2

andwe ob tain I = -
7

2
5a” + 1

-l
sinn + lOdO wan +

l

f sinn + 10dO

0 0

72 n —2 n—4
. . down to gor -

l
- E

n + 1 n —l n —3
°

3 2 2
’

according as n is even or odd.

‘

Ex. 2 . Evaluate I f log sm xdx.

0

log cos y dy log cos x dx.

Hence log sin x dx I log cos xdx
0

log sin 37cos xdx

( log sin 2x log 2)dx

log s in 2xdx 4 7
2
1
.

log 2 .

log sin 2x sin z dz log sin xdx=L

0
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2L=I —
gk g 2

‘

f log sin xdx f log cos x dx=1
r
lo<f l

2
°
2

0 0

f
0

Expanding th e logarithm
,
we have

2

I ( l iv al
. t )d1

2
+
3
+
Z
+ o w x

1 1 1 1

x= 1

j
fi k gyay

=j
q x

aa

1
l —y

0

1 — 37

Hence we also have I
0

dx
Ex. 4 . Evaluate I f

w

log<x+ -
1

l +a
z

0 o

x= tan (9,
dx= se0

29 dO;

log(tan (9+ cot O)dO

—

f (log s in 9 log cos O)dO
O

— 2jlog sin Od9= 7r log 2 .
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1 10. Differentiation under an Integral Sign.

Suppose th e function to b e integrated to b e ¢(az , c)
contain ing a quantity 0 which 1s independent of x.

Suppose also that th e lim its a and b of th e integra
tion arefin ite quantities , and independent of 0.

Then will

¢ (m,
c)dd x c doc.

For let ¢(cc, c)dm.

Then it 6n 0500, c 60)d93,

which
,
by Taylor

’

s theorem ,

8¢(w,
c)
+
6e 8 2¢(w,

c)
80

+
2 8 02

And if 2
,
say ,

b e th e greatest value of which
be capab le

,

8 02

802
da: 60(b—a)z ,

and van ishes in th e lim it when 60 is indefinitely
dim in ished. Thus in th e lim it

aa(nz , C>
cla¢

6 c
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1 30 INTEGRAL CALCULUS.

2 . Integrate (i. )

[ST. JOHN ’
s , 1 889 ]

3 . Find th e values of

sin a: da'

[7,

Prove that , with certain lim itations on th e values of th e

constants involved
,

arc sin (
ap b)x bp c

.

(x ap
2 - 2bp

- cy
‘
r (x—

pxb
‘
z —acff

[TRINITY, 1 886
5 . Prove that (cos x)

”dx m ay b e expressed by th e series
3 5 7

S 1 11 90 s1n x s1n x
s1n x—N + N .,

—N1
3 5

3
7

N
1 ,
N2, N3, b eing th e coefficients of th e expansion ( 1

and n having any real value positive or negative .

[SMITH
’
s PRIZE, 1 878 ]

6 . Evaluate th e following defin ite integrals
(i. )

[ST. JOHN
’
s , 1 888 ]

ao

o
\

( 1

7. Prove that 77

( 1 + x
2
) ( 1 - x

2
)%

2 V2

2V3

8 . Show that
[OXFORD,
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EXAMPLES. 1 31

9 . Evaluate (i.)

[I . o. S 1 889 ]

l

di'

1 2a cos x ii-a
z
'

[I. C . S

1 0. Prove that [
I

cos
’
n

'

olj is equal to z ero
I

accordingas n is odd or even ;
If S denote the sum of th e infinite series

8 1n
4x sinfix

3 2 1 52.

_ 7r
2

7rprove that SM
4 2 [OXFORD,

1 1 . Prove that if c be '

< 1
,

“
if

1 0
5

'

0
7

f S1 11
“

(c cos x)d.r -
2

—
2

-l

0

1

71
cos x)]

2dw=
2
—
2

2
-1-
4 2
-1
6 2

-

3
—
8

2

-l

1 2 . Prove that ] (
0

-

2

) dO 7r log 2 .

sin 9
0

Find a reduction form ula for e
“x

sin”
xdx.

[Sr JOHN’S
,

Evaluate ( i. ) f sin x log sin xdx.

[a,
0

f tan ”0 l0g 8 1“xdx'

[S'n JOHN ’S ,

f sin 2x log tan x dx.

0
[ST. JOHN’S, 1 886 .
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dx
1 5 . E l tV3 “3“e ( I ) [

0
8
2
sin zx+ bzcoszx [L 0 . S.

f [I. o. s . , 1 891 .1

1r 2

1 6 . Prove f
a: tan m dx 7r

sec 56 cos x 4 [POISSON ]
xdx

1 1 . l a
2—cos

2x Qw/az — l
,

a b eing supposed greater than un ity. [Oxronm
1 2

17. Prove ( i.) j
o

logxdx
71

1 + x 1 2

( ii (
1

1

0gx

)
2

dx __n

1 8 . Prove that
1

a dz

0
l + a

2
( 1 —2

2
)

1 9 . Prove that

-a a
7

3 5 3 5 7

[Oxronm
w

h
o

r I
f
“

2

2
“

2
6
4 +

2 2 2
6
6
+

( 1
2 2 . 4 2 . 4 . 6

6 b eing supposed l .

20. Prove that
1 2f e

m
ale) : 1 —+

x —etc.

2 2 3 3 4 4 5°
0

[MATH. TRIPOS,
2 1 . Prove that

1 1 l 1

22 . If —
qS(2a —x), j ¢(x)dx

23 . Prove that f jig—36h ?
rem ains finite wh enbx van ishes .

ad inf. +J2)

b
¢<m>dx

0

[TRIN. HALL, etc. ,

qS(c —x) x rovi e x
car — b)

“p d d i“
[ST. JOHN

’

s ,
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l

30. Find th e lim i ting value of (MW/n when 72 is 1nfi nite .

3 1 . Find the lim iting value when n is infin ite of the nth part
of the sum of th e n quantities

n+ 1 n+ 2 n+ 3 n+n
.

5

7b 77, n n

and show that it is to the l im iting value of th e nth root of th eproduct of th e sam e quantities as 38 8
,
wh ere e is th e base of

the Napierian logarithm s . [OXFORD,

3 2 . I f m at is always equal to un ity and n is indefinitely great,
show that th e lim iting value of th e product

-1_

{ 1 + a
4
}{ l is 8

48

[Oxr onu



CHAPTER IX.

RECTIFICATION,
Ere.

1 1 3. In the course of the next four chapters we
propose to il lustrate th e foregoing m ethod of ob tain
ing th e lim it of a sum m ation by application of the

process of integr ation to th e prob lem s of finding the
lengths of curved lines

,
th e areas bounded by such

lines
,

finding surfaces and volum es of solids of

revolution
,
etc.

1 1 4. Rules for the Tracing of a Curve.

As we shall in m any cases have to form som e roughidea of the shape of th e curve under discussion
,
in

order to properly assign the lim its of integration ,

we m ay refer the student to th e author’s larger
Tr eatise on the Difier en tia l Calcu lus

,
Chapter XII .

,

for a full discussion of th e rules of procedur e.

The following rules, however , ar e transcribed for
convenience of reference

,
and will in m ost cases

suffice for present requirem ents

1 1 5. I. For Cartesian Equations.

1 . A glance will suffice to detect sym m etry in a

curve.



INTEGRAL CALOULUS .

(a ) If no odd powers of y occur
,
th e curve is sym

m etr ical with respect to th e axis of w. Sim i
lar ly for sym m etry about th e y

-axis .

Thus yz =4awis sym m etrical about th e ac-axis .

(b) If all th e powers of both a: and y which occur
b e even

,
the curve is sym m etr ical about both

axes , e.g.
,
the ellipse

(0) Again ,
if on changing the signs of w and y,

the

equation of the curve rem ains unchanged,
there

is sym m etry in opposite quadrants , e.g. th e

hyperbola my
: a

2
,
or the cub ic x3+y3=3am.

If the curve b e not sym m etr ical with regard to

either axis
,
consider whether any ob vious transform a

tion of coordinates could m ake it so.

2 . Notice whether the curve passes through the

origin ,
also the points wher e it cr osses the coordin ate

axes
,
or

,
in fact any points whose coordinates present

them selves as obviously satisfying the equation to the
curve .

3 . Find the asym ptotes ; first
,
those parallel to the

axes next
,
the ob lique ones .

4 . If the curve pass through the origin equate to

z ero th e term s of lowest degree . These term s will
give th e tangent or tangents at th e origin .

5 . Find Qlfl and where it van ishes or becom es ih
dx

finite
,

fl.e.

,
find where the tangent is parallel or per

pendicular to th e m.t
-axis.

6 . If we can solve th e equation for one of th e

variab les
, say y ,

in term s of th e other
,
as

,
it will be

frequently found that radicals occur in th e solution
,

and that the range of adm issib le values of a: which
give real values for y is thereby lim ited. Th e existen ce

of loops upon a curve is frequently detected thus .
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1 38 INTEGRAL CALOULUS.

the two points which term inate th e arc whose length
is sought.

Form ula in th e Int. Cale. Refer ence .

P. 98 .

f 1 + (f -fdx.

dx

P . 98 .

dr 2 P . 103.

3 d9 .[VM L (do)
P . 103 .

dx 2
(W
)
? P . 100.

0 ”

r dr

P . 148 . For use when Ta

g e n t ia l P o l

Equation is give

1 1 9 . We add illustrative exam ples

Ex. 1 . Find th e length of th e arc of th e parab ola x2=4ay
extending from th e vertex to one extrem ity of th e latus-rectum .

2

jl/
=—
x

yl
— fi

, and th e lim its ar e m=oand x=2a. Hence

4a 2a

7. a t 2.

For Cartesian Eq
tions of form
31 =flx)

For Cartesian Eq
tions of form

x

For Polar Equatio
of form

r

For Polar Equatio
of form

0

For case wh en our

is given as

y=F (t)
For use when Pe
Equation is give



RECTIFICATION ,
ETC. 1 39

Ex; 2 . Ob tain th e sam e result by taking y as the independent variab le.

and th e l im its ar e and y
= a . Hence

(Put y a tan29,
and dy 2a tan 0sec29 dd.)

2a sec30dB

2ali
banH
é
sec0

log( tan 9 secOi]
+ log( 1

Ex. 3 . Find th e perim eter of th e cardioide r = a ( 1

Fig. 1 1 .

The c
‘

urve is sym m etrical ab out the initial line, and (9 varies
from O to 71 for th e upper half.

2225 a sin 9.

Hence are 2 Ja 2( 1 cos a
z
sin zfidd

“

2a .

-/
r

2
,

sinQd9 E—Sa cos2 2 o
0
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Ex. 4 . Find th e length of th e ar c of the equiangular spiral
p
= r sin a b etween th e points at which th e radi i vectores ar e

and r 2 .

Here

Ex. 5 . Find the length of any arc of th e involute of a circle
,

whose equation is

Here [3—5} 2 21 13- 518
2 w>+Ba we,

where ilr l andW2 are th e values of \lr at the b eginn ing and end

of th e arc respectively.

1 20. Form ula for Closed Curve.

In using the form ula

air
in the case of a closed oval

,
th e origin b eing Within

th e curve
,
it m ay b e ob served that th e length of the

whole contour is given by

w

pdgb ,
for th e portion

disappears when the lim its ar e taken .

Ex. Show that th e perim eter of an ellipse of sm all eccen
4

tr icity e exceeds by$51 of its length that of a circle having th e
sam e area. h ,

Here 20
2

a
z
cos

‘

fib 62sin2\lr a
2
(1 3

2
Sin211/

where 1/r is th e angle which go m akes with th e m ajor axis.

Hence p
= a<1 éezsin ztlf ée4sin4w

1 1 71
' l 3 1 7r

Hence 8 = 4a 2
. e

4
. ver a rom m atel

2 2
6

2 2 8 4 2 2
y pp Y)

27rd
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'

US.

6 . Show that in th e ellipse r = a cos O, y z b sin 9, th e peri
m eter m ay b e expressed as

7. Find th e length of any ar e of the , curves

( i. ) r = a cos 9. ( iii .) r =a0.

( ii . ) r acme. ( iv . ) r a s1n

8 . Apply the form ula fp dVr to rectify th e cardioide

whose equation 1 s r =a( 1 + cos [TRINIT1, 1 888 }
9 . Two radii vectores OP

,
06? of the curve

3

(Z.

" Q)r a cos

4 3

are drawn equally inclined to th e initial line ; prove that th elength of th e intercepted ar c is aa
,
where a is th e circular

m easure of the angle POQ.

10. Show that th e length of an arc of th e curve yn=xm +n
can

n n l
b e found 1 11 fini te term s 1 11 th e cases when or -

2
1 s an

integer. 2m 2m

1 1 . Find th e length of th e are b etween two consecutive cusps
of the curve (02 a

2
)p
2= c

z
( r
2

a
2
) .

1 2 . Find the whole length of the loopof th e curve

[Oxroam

1 3 . Show that th e length of th e arc of th e hyperbola .rg/
= a

2

b etween th e lim its x= b and x= c is. equal to th e ar c of th e

curve p2(a4 r
4
) a

‘i
r
2 b etween th e lim its r b

,
r c.

[Oxr oan,

1 4 . Show that in th e parab ola 1 4-008 0

hence show that th e ar c intercepted b etween the vertex and the

extrem ity of th e latus rectum is -l; log (1
[I. o. s . ,
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1 21 . Length of the Arc of an Evolute.

It has been shown (Difi. Ga le. for Beg ,
Art. 157)

that the difference b etween th e radii of curvature at

a

Fig. 1 2.

two points of a curve is equal to th e length of th e

corresponding arc of th e evolute ;

Fig. 1 3.

i .e.
,
if ah b e th e arc of th e evolute of th e portion AH

of the original curve , then (Fig. 1 2)
are ak=Aa —E h

,
i .e.

, p (at A ) ~

p (at H) ,
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and if th e evolute b e regarded as a r igid curve ,
and a

string b e unwound from it
,
b eing kept tight, then th e

points of the unwinding string describ e a system of

parallel curves one of which is the original curve AH .

Ex. Find th e length of the evolute of th e ellipse.

Let a
,
a B, B

’

b e th e centres of curvature cm r esponding to

th e extrem ities of th e axes
,
viz

,
A,
A

’

,
B
,
B

’ respectively. Th e

ar e afi of th e evolute corresponds to th e arc AB of th e curve
,

and we have (Fig. 1 3)
a
2 62

ar e afi=p(at B ) —p(at A) b a

[f0 1 rad. of curv. of ellipse :

7
. Ex. 3

, p. 1 53
,
Daf tGa le. for Bea] .

Thus th e length of th e entire perim eter of the evolute
6

5)
EXAMPLE.

Show ln the ab ove m anner for the parab ola y2=4ar that th elength of the part of th e evolute intercepted within the parab ola
is

122. Intrinsic Equation.

Th e relation b etween 8
,
the length of th e arc of a

given curve , m easured from a given fixed point on

Fig. 1 4 .

th e curve , and th e angle b etween the tangents at the

extrem ities of th e arc is called th e Intrinsic Equation
of th e curve .
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and therefore s c sinh f
,

c

the constant of integration b eing chosen so that x and 8 vanish
together

,
whence

8=c tan xp.

To ob tain the Intr insic Equation from the
Polar .

Fig. 1 6.

Take the in itial line parallel to the tangent at the

point from which th e arc is m easured. Then with the
usual notation we have

the equation to the curve ,

do

If s b e found by integration from and 6 , <1)
elim inated by m eans of equations ( 2) and the

r equired relation between 8 and (Dwill b e found.

Ex. Find the intrinsic equation of the cardioide
r = a ( 1 cos

w=e+ ¢
_
a( 1 —cos 9)tan d)
a sin O

— tan
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“
1 47

Hence

Fig. 17.

2a s 1n

19—4a cos

-

C.

2

-1

we determ ine C so that 8 =O when

th e intrinsic equation sought.
We m ay notice that if A b e th e vertex, th e ar c AP is4acosV

,
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1 25. When the Equation of the Curve is given as

a} y
we have tan tb $573 3358

g;
By m eans of equation (2) 8 m ay be found by in

tegration in term s of t.

If then
,
b etween the result and equation ( 1 ) t b e

elim inated
,
we shall obtain th e r equired relation

b etween 3 and EP

Ex. In the cycloid
x a (t sin t),

y
=a ( l cos t),

t th t
8 1“

twe ave an \Zr
1 + 00“an

2
,

t= 21x.

0 t o o o

whence 8=4a s1n

5
l i 8 b e m easured from th e or 1g1n where t

Hence 8 =4a sin it is th e equation required.

1 26. Intr insic Equation of the Evolute.

Let b e the equation of th e given curve.

Let s
’

b e th e length of the ar c of th e evolute m easured
from som e fixed point A to any other point Q. Let

0 and P b e th e points on th e original curve corre
sponding to th e points A , Q on the evolute ; po, p the
radii of curvature at O and P ‘

gh
’

th e angle the

tangent QP m akes with GA produced
,
and 3b the

angle the tangent P T m akes with th e tangent at 0 .
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128. Length of Arc of Pedal Curve.

Ifp be th e perpendicular from the
,

or igin upon the
tangent to any curve , and X th e angle it m akes with
the in itial line

,
we m ay r egard p , X as th e cur rent :

polar coordinates of a point on the pedal curve .

Hence the length of the pedal curve m ay be cal

culated by the form ula

EX. Apply the ab ove m ethod to find th e length of any are

of th e pedal of a circle with regard to a point on the circum
ference (i.e. a cardioide) .

Fig. 1 9 .

Here
,
if 2a b e th e diam eter

,
we have from the figure

p
: OP cos

If 2a cos

Hence

2

[2a cos§dx=4a sin
9

5
6
4-6

1
.

Th e lim its for th e upper half of th e curve are x=0 and x=7r.

Hence the whole perim eter of th e pedal
2[4a sinK]

,

8a .

2 o .
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EXAMPLES.

1 . Find th e length of any ar e of th e curve y2(a
[a, 1 888 I

2 . Find th e length of th e com plete cycloid given by
x=a 19+ a sin 0,

y=a —a cos 9.

3 . Find th e curve for which th e length of the are m easured
from the origin varies as th e square root of th e ordinate.

4 . Show that the intrinsic equation of th e parabola is
8=a tan 11’ sec xlr + a log(tan 11r + sec ih) .

5. Interpret th e expressions
(i. ) [ r dx

dyds
,

r
2 ds r

2 ds

wherein th e l ine integrals ar e taken rou ad th e perim eter of a
given closed curve. [ST. JOHN’S

,

m ajor axis of an ellipse is 1 foot in length
,
and its

eccentricity is Prove i ts circum ference to b e 3 1 337 feet
nearly . [TRINITY, 1 883.

7. Show that the length of th e arc of that part of the

cardioide r = a( 1 + cos O) , which lies on th e side of the line
4r =3a sec 6 rem ote from th e pole, is equal to 4a . [Oxr onm

8 . Find the length of an ar c of th e cissoid

9 . Find the length of any ar c of th e curve

10. Show that th e intrinsic eq
l

uation of the sem icub ical pa1 a
bola 3ay2=2x3 1s
1 1 . In a certain curve

show that
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1 2 . Show that the length of an ar c of th e curve
x sin O+y cos O=f

’

(O),
x cos 9—

y sin

is given by 8 =f(0) C.

1 3 Show that in th e curve y : a log sec th e intrinsic equa
tion 1 s 8=a gd

“ 1
\k.

a

1 4 . Show that th e length of th e arc of th e curve g= log coth x
sinh x2 2

s inh x1
b etween the points (231 , yl ) , (x2, y2) i s log
1 5 . Trace th e curve y2=

§g(a
—x)

2
,
and find th e length of that

part of the evolute which corresponds to the loop .

[ST. JOHN’S , 1 881 and
1 6 . Find th e len th of an arc of an equiangular spiral

(10— r s1n a ) m easuredfrom th e pole .p
Show that th e arcs of an equiangular spiral m easured from

th e pole to th e different points of its intersection with another
equiangular spiral having th e sam e pole but a different angle
will form a series in geom etrical progression . [TRINITY, 1 884.

17. Show that th e curve whose pedal equation is p? r
2— a

2

has for its intrinsic equation s= a%
z

.

1 8. Show that the whole length of th e lim acon r =a cos

is equal to that of an ellipse whose sem i axes are equal 1 11 length
to th e m axim um and m inim um radi i vectores of th e lim acon .

1 9 . Prove that th e length of th e nth pedal of a loop of th e

curve r
m

z a
m
sin m 9 is

W 1 1 1] ( 8 11 m m 1.
0

Show that th e length of a loop of th e curve

elf
2

[ST. JOHN ’S,
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as indicated in the figure . The expression for the

area will accordingly be
LtgPQdaz or

Fig. 20.

Ex. 1 . Find the area bounded by th e ellipse the
a

ordinates x= c
,
x=d and th e x-axis .

a, 2 2

Here area f {wa 2 9.
3 l =9“do;

30
2

si
a a

b
[dJa

2 - d2 —c~/a2 “3
2a a. a

For a quadrant of th e ellipse we m ust put d z a and and

th e above expression becom es

6 “2
2a

‘

2 4

giving 7701) for the area of th e whole ellipse.

Ex. 2 . Find th e area ab ove th e x-axis included b etween th e
curves y2=2ax —x2 and y

2

The circle and the parab ola touch at the origin and
‘

cut agaln

at (a , a ) . So the lim 1ts of in tegration are from to
“
x=a.

The area sought is therefore



“
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Now,
putting x=a( l cos

“
E xdd?

0

Thus th e area required is

Fig. 21 .

Ex. 3 . Find th e area
( 1 ) of th e loop of th e curve —

y
2
)

(2) of the portion bounded by th e curve and its asym ptote.

a —x
y
2=x2_ .

a +x

To trace this curve we ob serve a

( 1 ) It is sym m etrical about th e x-axis .

(2) No real part exi sts for points ‘

at
’

whic
'

h x 1 s > a or

(3) It has an asym ptote
(4) It goes through th e origin

,
and the tangents there are

i x.

( 5) It crosses th e x-axis where x: a
,
and at this point$31 is

‘

infin ite.

x
( 6) The sha e of

.
th e , curve is

“

therefore that shown in the
figure ( g. 1

Hence for the loop thel im its of integration ar e 0 to a
,
and

then doub le th e result so {as to include the, portion b elow the
t j
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For the portion b etween . the curve and th e asym ptote thel im its ar e a to O
,
and doub le as b efore .

For the loop we therefore have
area= 2f

a

a +x
dx

for the portion b etween the curve and th e asym ptote,
o

area - 2f JM/u dx.

a

d +x

To integrate
x

x= a cos 0 and dz : —a s in 0d9.

f
a

xvu d —
j
0

a cos 9 \ /
—
8

2
€)fa sin c9d0

0
a +x

1

1 —cos 9

varea of loop= 2a2( 1 -Z{
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EXAMPLES.

1 . Ob tain th e area b ounded by a parab ol a and its latus
rectum .

2 . Ob tain th e areas b ounded by th e curve
,
th e x-axis

,
and th e

specified ordinates in th e following cases

(6)
*
x=0 to x=lz .

liv=0 to x=h .
.

(e) y
= logx, x=a to

( f) xy r z lcz
, x=a to

3 . Ob tain the area boundedby th e curves y2=4ax, x2=4ay.

4 . Find the areas of the portions into which th e ellipse
18 divided by th e line y :- c.

5. Find th e whole area included b etween th e curve
xzy

‘
é
‘
éz a

Z
Q/
Q—xz )

and its asym ptotes .

6 . Find th e area b etween th e curve (a x)
3
and its

asym ptote.

7.
.Find th e area of the loop of th e curvefix (x q )

2
(x O.

1 31 . Sectorial Areas. Polars.

When th e area to b e found is bounded by a curve
rr f (9)= and two radii vectores drawn from the origin
in given directions , we divide th e area into elem entary
sectors with the sam e sm all angle 66 , as shown 1n th e

figure. Let the area to b e found b e bounded by th e arc
PQ and th e radii vectores OP ,

OQ. Draw radii vectores
OP

] ,
0P

2 ,
. at equal angular intervals . Then

by dr awing with centre 0 the successive circular arcs
PN ,

P N
1 ,
P
2
N
2 ,
etc.

,
it m ay b e at once seen that the

lim it of the sum of th e circular sectors OPN , OP N 1 ,

0P
2
N

, etc.
,
is the area r equired. For the r em ain ing

elem ents PNP
1 ,
P
1
N
1
P
2 ,
P
2
N
2
P
3 ,
etc.

,
m ay b e m ade to

rotate about 0 so as to occupy new positions on the
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gr eatest sector say OP _ 1Q as indicated in the-figure .

Their sum is plain ly less than this sector ; and in the

lim it when the angle . of ' the sector is
“indefin itely

dim m ished
’

its area also dim inishes without lim it
vided radius vector OQ rem ains finite.

The area of a circular sector is
2(radius)2 x circular m eas . of angle of sector .

Thus th e area required =2Lt2 ’
r
269, the sum m ation

being conducted for such values of 9 as lie b etween
9 wOP and 9 xOP n _ 1 , t.e.

,
mOQ in the lim it, 0213 b eing

the initial line .

In . the notation of the integral calculus if sc
i /

OP a ,

andw6Q= this will b e expressed as

2 aid or 9)}
2d9 .

(1

Ex. 1 . Ob tain the area of the sem icircle b ounded by r =a cos 9
and the initial line .

Here th e radius vector sweeps over th e angular interval from
to 0

77
Hence th e area is

2 2
a 1 a

a
z
cos

29d9 Z L
, wradi us)

?
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Ex. 2 . Ob tain th e area of a loop of th e curve r =a sin 39.

This curve will b e found to consist of three equal loops as

indicated in the figure (Fig.

The proper l im its for m aking th e integration extend over th e
first loop ar e 9 : O and 9= for these are two successive values
of 9 for which r van ishes .

1 2 2 _
a
2

1}
area of loop

=
2

a s1n 3 9d9 —

Zf
0

( 1 —cos 6 9)d9
0

1

a
2

7: 7 m
?

06 4 3 1 2

2

The total area of th e three loops is therefore 77:

EXAMPLES.

Find th e areas b ounded by
1 . r

2=a
2
cos

29+ bz sin29. 3 . One loop of r=a sin 49.

2 . One loop of r : a sin 29. 4 . One loop of r = a s1n 71 9

5 . Th e portion of r : b ounded by th e radii vectores
9=

,
8 and 9=B+y (y b eing less than 27r ) .
6 . Any sector of r

%9=a
% ( 9=a to

7. Any sector of 7
4 9§= a ( 9= a to

8 . Any sector of r 9= a (9= a to

9 . The cardioide r =a( 1 — cos

0
1 0. I f 3 b e th e length of th e curve r = a tanh

§
b etween th e

origin and 9 : 27r
,
and A th e area b etween th e sam e points,

show that A= a(s aw) . [Oxronm 1 888 .J
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Ex. Find by this m ethod th e area of the ellipse
+g/

2
/6
2 1 .

Putting y=vx, we have
1 11

2

WWI? )
112037) ab2

area 2fx dv éfm
_

2

a

b etween properly chosen lim its.

Now
,
in the first quadrant v varies from O to co Hence

area of quadrant — a

; g,
and therefore area of ellipse fl ab.

1 34 . If the origin lie without the curve ,
as the

current point P travels round we ob tain triangular
elem ents such as OP

lQl , including portions of space
such as OP

2Q2 shown in th e figure which lie outside

Fig. 26 .

the curve. These portions are however ultim ately
rem oved from th e whole integral when th e point P
travels over the elem ent P

2Q2 , for th e triangular
elem ent OP

2Q2 is reckonednegatively as 9 is decreasing
and 69 is negative.

1 35. If however the curve cross itself, the expression
2 —

ydw) , taken round the whole perim eter , no

longer represents th e sum of th e areas of the several
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loops. For draw two contiguous radii vectores OP P

OQ1 cutting the curve again at Q2 , P 2 , Q4 and P 2 , Q2 , P
respectively. Then in travelling continuously through
the com plete perim eter we obtain positive elem ents

,

such as OP
IQ1 and OP

2Q2 , and negative elem ents

such as OP
2Q2 and OP 4Q4.

Now OP
IQ1 OP

2Q2 OP
3Q3 OPQ 4

quadl. P 1Q1P 2Q4 quadl . P 2Q2P 2Q2 ,

and in integrating for th e whole curve we therefore
obtain the difference of the two loops .

Fig. 27.

Sim ilarly,
if the curve cuts itself m ore than once

,

this integral gives the difference of th e sum of the odd

loops and the sum of the even loops .

To obtain the ab solute area of such a curve we m ust

therefore ob tain that of each loop separately and then
add the results .

Of course in curves with several equa l loops it is
sufficient to find th e area of any one

,
and to as certain

the num ber of such loops .

136. Other Expressions for an Area.

Many other expressions m ay be deduced for th e

area of a plane curve , or proved independently ,
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specially adapted to the cases when the curve is

defined by other system s of coordinates .

If PQ b e an elem ent 68 of a plane curve
,
and OF

the perpendicular from th e pole on th e chord PQ,

Fig. 28 .

AOPQ 20Y.PQ,
and any sectorial area 2LtZOY.PQ

th e sum m ation b eing conducted along the whole
bounding are. In the notation of the Integral Cal
culus this is

2 p ds .

m ay b e at once deduced from 2 7
2d9 ,

T sin 95 ds

(where 95 is th e angle b etween the tangent and the

radius vector)
da ]

137. Tangential-Polar Form .

Cls dzp
Agam ,

sm ce p TEE
—
29 +

6222
2 ,

we have area
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1 39. Pedal Equation.

Again ,
for curves given by their pedal equations ,

we have
ds

A dsp dr 10 sec 925dr

Ex. In the equ iangular Spiral p= r sin a .

Hence any sectorial area
’2 r

z
sin (1 dr

7
“
COS a

1 40. Area included b etween a curve, two radii
of curvature and the evolute.

In this case we take as our elem ent of area the

elem entary triangle contained by two contiguous radii
of curvature and the infinitesim al arc d8 of the curve.

Fig. 30.

To first order infinitesim als this is %p26\b ,
and th e

ar ea=LtZ t.e. 3
1
2 l

a
z
uli/f or 5 p als .

EX . 1 Th e area b etween a circle
,
its involute

,
and a tangent

to th e Cl I
‘

Cle is (Fig. 3 1 )
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Ex. 2 . Th e area b etween th e tractrix and its asym ptote is
found in a sim ilar m anner.
The tractrix is a curve such that th e portion of its tangent

b etween th e point of contact and the x-axis is of constantlength 0.

Fig. 31 .

Taking two adjacent tangents and th e axis of x as form ing an
elem ental triangle (Fig. 32)

area=2 gf
'

c
zdvf

Fig. 32.

EXAMPLES.

1 . Find the area of th e two-cusped epicycloid
p 2a sinl

2
k

.

[Lim itsW=O to for one quadrant ]
2 . Ob tain th e sam e result by m eans of its pedal equation

a
2
+2p

2
.

[Lim its r : a to r =2a for one quadrant ]
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3 . Find th e area b etween th e catenary 3= c tan lb , its evolute ,
th e radius of curvature at th e vertex

,
and any other radius of

curvature.

4 . Find th e area b etween th e epicycloid 3=A sin E lk, its
evolute

,
and any two radii of curvature .

5 . Find th e area b etween the equiangular spiral s=AeB¢, its
evolute, and any two radii of curvature .

AREAS or PEDALS.

141 . Ar ea of Pedal Curve.

If be the tangential-polar equation (Difi'

.

Calc. for Beginn er s , Art. 1 30) of a given curve , dgb
will b e the angle b etween th e perpendiculars on two

contiguous tangents , and the area of th e pedal m ay be

expressed as p
2dgb (com pare .Art.

Fig. 33.

Ex. Find the area of th e pedal of a circle with regard to apoint on th e circum ference (th e cardioide) .
Here if OY b e the perpendicular on th e tangent at P

,
and

0A th e diam eter it is geom etrically obvious that OP
b isects th e angle AGY. Hence , calling we have for
th e tangential polar equation of the circle

20 2a coszlg.
Hence area éf4a

z
cos

4gdxb,



https://www.forgottenbooks.com/join


170 INTEGRAL CALCULUS.

of th e pedals Awith O and P respectively as origins are
zdgb and 4;

taken b etween certain defin ite lim its . Call these
areas A and A

I
respectively Let r

, 9 b e the polar
coordinates of P with regard to 0

,
and as

, y their
Cartesian equivalents . Then

201 p
—r cos(G—w) =p—m cos ¢ -

y shut ,

andp is a known function of (D Hence
2A

I
xp:

p
—az cos gb

—
y sin ( bf’dgb

2dgb 2x cos \b (M 2y sin ( b dgb

C3
2

osfib do 25133/ cos 3b sin gt dgb

y sin2gb Clip.

Now 2 cos (0 dgb ,
sin ( b dgb cosn dw,

b etween such lim its that the whole pedal is described
will b e definite constants . Call them

2g,
a

,
2k

,
b
,

and we thus obtain
2A

1
2A 29 913 2fy ax

? 2hwy by
?

If then P m ove in such a m anner that A
I
is constant,

its locus m ust b e a conic section .

1 43. Character of Conic.

It is a known result in inequalities that

(pP1+QQ1 + + kk1 )
2

Hence it will b e obvious that if p, q, a
“
,

stand for
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cos h
,
cos 2h

,
cos 3h , ,

cos
f
i
f

th
,
and

,
for

sin h
,
sin 2h

,
etc . we shall have in the lim it when it is

m ade indefin itely sm all and nh fin ite : 3 , say ,

¢
cos

2

¢ dipx
1P
sin i

’

gb dgb sin 3b cos l/I
‘ dgb)

ab> h2

Hence our conic section is in general an ellipse.

Moreover the position of its centre 1 s given by
aw+hy+g
km+ by f

and is independent of th e m agnitude of A
I

. Hence
for different values of A

I
these several conic-loci will

all b e concentric. We shall call this centre Q .

44. Closed Oval.
Next suppose that our original curve is a

oval curve
,
and that the point P is within it.

the lim its of integration are 0 and 27r .

Thus cosfib d3lr s1n
2

3b clgb b

COSwsin 1p 0.

Hence the conic b ecom es

t.e. a circle whose centre is at th e point
p cos Sb dgb ,

1
p sin (Ddrb .

1 45. Connexion of Ar eas.

The point 9 having b een found,
let us transfer our

origin from O to Q .

'

I he linear term s of the con ic
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will thereby be rem oved. Thus Q is a point such
that the integrals Clgb and sin ( b dxjf both
van ish ,

and if H b e the area of the pedal whose pole
is 9 we have for any other

2II ewe? 211563] by
2

in the general case . The area of this con ic is
27r(A1

II )

(Sm ith’

s Conic Section s , Art. Thus
2

A
I
II
J a

g
) 11,

7T

For . the particular case of any closed oval th e equa

tion of th e con ic b ecom es

(area of conic) .

whence A
I
H

where T is th e radius of the circle on which P ‘ lies for
constant values of A

1 ,
i .e. the distance of P from Q .

146. Position of the Point Q for Centric Oval.
In any oval which has a centre the point Q is

plainly at that centre ,
for when the centre is taken as

origin ,
the integrals and

both vanish when th e integration is perform ed for th e

com plete oval (opposite elem ents of th e integration
cancelling) .
147. Ex. 1 . Find th e area of th e pedal of a circle with
regard to any point within th e circle at a distance C from the

centre (a lim acon) .
2

Here AI H

and II 7 m
2
.

2

Hence AI 7m
2 I i .
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Y2Q0=%TOQ
9

2

Hence { 915 03
—5,

(9 77 (I)
(I)

2 2 3
’

9 _
~

30_

p
— T s1n

Q
— 2a sm

é
— 2a cos

Hence [p cos (I) dd) =2f
§

l

2d cos“?cos c") dd)
0

40. x 3 cos
3
z cos 3z dz

0

1 2a] [4 cos
fi
z 3 cos4z ]dz

0

— 1 2a[4
5 3 1 7r

_
3

_
1
_

77

]
372-61,

6 4 2 2 4 2 2 4

1 7r 377022
cos

2 d[0 4) C

2 2 2

i
f}

4)Flnally 2A= 2 [ M 2
00 8

6

§
d¢= 24a

2
cos

6
z dz ,

'

0

A= 1 2a2§ 3 1 71
” 1 571-61 2

6 4 2 2 8

1 57761 2 3711 110

8
+

4

7r (5d
2 2 61 0 2c2) .

148. Origin for Pedal of Minim um Ar ea.

When Q is taken as origin ,
it appears that

2A
I

at cos (D y sin 3b )
2dgb .

Hence as th e a: cos x]; ysin (b )
2d\b is necessarily

positive
,
it is clear that A

1
can never be less than II .
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Q is therefore the origin for wh ich th e corresponding
pedal curve has a m inim um area .

149 . Pedal of an Evolute of a Closed Oval.
Th e form ula for th e area of any closed oval proved

in Art. 1 38 i s

area of oval 10
2 dgb .

Hence p
2d3b =oval+ % dgb

dgb .

Fig. 37.

which plainly expresses that the area of any pedal
of an oval curve i s equal to th e area of th e oval itself
together with the area of th e pedal of th e evolute (for
020

W
This also adm its of elem entary geom etrical proof.

is th e radius vector of th e pedal of the evolute) .

Ex. Find th e area of th e pedal of th e evolute of an ellipse
with regard to th e centre .

Th e ab ove article shows that
area of pedal of evolute= ar ea of pedal of ellipse area of ellipse

=7j 2 2 _ 2+ 6 ) 711 1 6)
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1 50. Area bounded by a Curve
,
its Pedal, and a

pair of Tangents.

Let P , Q be two contiguous points on a given
curve

,
Y

,
Y’

th e corresponding points of th e pedal of
any origin 0. Then since (with th e usual notation )
P Y z —q—Zfl the elem entary triangle bounded by two

(W
contiguous tangents P Y, QY

’

and the chord YY’

is to

the first order of infinitesim als

2

Fig . 38.

Hence the area of any portion bounded by the two
curves and a pair of tangents to th e original curve
m ay b e expressed as

6,
1
,d

and is the sam e as the cor r esponding por tion of the
ar ea of the peda l of the evolute.

151 . Corr esponding Points and Areas.

Let f(a3, y) =0 b e any closed curve . Its area (A1 )
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Hence th e area of th e first curve
1

m n

x area of second

62
cos

29 8 1 11
29 d9

72

EXAMPLES.

1 . Find th e area of th e loop of th e curve

‘

ay
2=x2(a — x) . [I . C . S.

,

2 . Find th e whole area of th e curve
a
2
y
2

a
2
x
2—x4. [I. C . S. ,

3 . Trace th e curve a
2
r
z =
y
3
(2a —

y) , and prove that its area is
equal to that of the circle whose radius is a .

[I . C . S . , 1 887 and

4 . Trace th e curve a
4
y
2=x5(2a —x), and prove that its area is

to that of th e circle whose radius is a as 5 to 4 .

5 . Find th e whole area of th e curve
x2

y
2 x2

Q
2 x2 [CLARE, etc

6 . By m eans of th e integral [y dx taken round th e contour

of th e triangle form ed by the intersecting lines
y
=alx+ bp y

=a2w+ bm a
=w + ba

show that they enclose th e area

(5 ( l b - 511
2

+
(63.— b )

2

2 a — a 9 a — a 2 a
1 2

96

1

3
+

3
_

2)
[SM. PRIZE,

and its as m tote.

a —a
'

y P

8 . If it b e th e angle th e tangent m akes with th e axis of x,
show that th e area of an oval curve is

+ f3/ cos rh ds or xjx sinxh ds,

the integration b eing taken all round the perim eter.

7. Find th e area b etween y?
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9 . Find the areas of th e curves

(i.) x= a cos
3t
,

(
at

)
?

(g)y
= b sin3t ; a b

1 ’

10. Find th e areas b ounded by
x2+y

2= 4a2
,
x2+y

2=2ay, x
= a . [H. O. S. ,

1 1 . The parab ola y2= ax cuts th e hyperb ola .ft
'2

at

the points P
, Q and th e tangent at P to th e hyperb ola cuts th eparabola again in R. Find the area of th e curvil ineal triangle

PQR. [Oxronn,

1 2 . Find th e area com m on to th e el lipses
x
2 2p

? 2c2, 2x2 y
?‘ 202. [Oxr onm

1 3 . Find th e two portions of area b ounded by th e straightline y z c
,
and th e curves whose equations ar e

2
2

0
2
, 4x2 402. [L C. S. ,

1 4 . Find by integration th e area lying on th e sam e side of

th e axis of x as th e positive part of th e axis of y, and which
is contained by th e lines y2= 4ax, x2+y2=2ax, m=y+ 2a .

Express the area b oth when x is th e independent variab le
and when 3; is th e independent variab le. [Pnrnnnousa etc. ,

1 5 . If A is the vertex
, 0 th e centre

,
and P any point on th e

hyperb ola .xz /a ‘i 1
,
prove that
2 18 2Sl = b ‘

1nhx a cos 1

ab
’ y s

ab
’

where S is th e sectorial area AOP. [MATE Tm r os ,

1 6 . An ellipse of sm al l eccentricity has its perim eter equal
to that of a circle of radius a . Show that its area is

7ra
z
(1 —3% e

4
) nearly. [a,

17. Find th e curvilinear area enclosed b etween th e parab ola
y
2=4ax and its evolute .

1 8 . Show that th e area of the pedal of an ellipse with regard
to its centre is one half of th e area of th e director circle.

1 9 . Prove that th e area of the locus of intersections of

tangents at right angles for th e curve
is iwa

z
. [MATH. TRIPOS,

20. Prove that if s b e th e ar c of the curve
r a sec a

,

9 tan a a
,

where a is a variab le param eter
,
m easured from th e initial
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line to a point P 0 11 th e curve and if A b e th e area b ounded
by th e curve

,
th e initial line

,
and th e radius vector to P

,
then

9A2=2as3.

2 1 . Find th e area of th e closed portion of th e Folium
3a sin (9 cos 9

[I.

”

o. s

In what ratio does th e l ine x+y
= 2a divide th e area of th eloop 2 [Oxr oan,

22 . Find th e ai ea of th e curve r :
—
a 9e”9 enclosed b etween two

given radii vectores and two success ive b ranches of th e curve.

23 . Find th e area of the loop of th e curve r =a0cos 0 b etween

7T
0 O and 9

é
.

[OXFORD,
24 . Show that the area of a loop of the curve r = a cos n0 is

vra
z

4n

25 . Find th e area of a loop of th e curve r =a cos sin 39.

( 1 . o. s .

,

26 . Show that th e area contained b etween th e circle r = a and

th e curve r = a cos 59 is equal to three-fourths of th e area of th e

circle. [Oxr onm

27. Prove that th e area of th e curve
r
2
(2c

2
cos

20 2ao sin (9 cos 6 a
z
sinzd) a

z
c
2

is equal to 7rac. (I. C . S. ,

28 . Find th e whole area of th e curve represented by th e

equation r = a cos (9+ b, assum ing I) a .

29 . Find th e area included b etween th e two loops of. th e

curve r = a(2 cos 9+J3 )
30. Find th e area b etween th e curve r = a(sec 9+ cos (9) and

its asym ptote .

3 1 . Prove that th e area of one loop of th e pedal of th elem niscate r = a
2
cos 2 9 with respect to th e pole 1s a

and state th e total area in th e cases n odd
,
n even .

32 . Find th e area of th e loop of th e curve
(x—l—g/s = 2ad'

y. OXFORD ,
33 . Prove that th e area of th e loop of the curve

2
5 +y

5= 5ax2y
2 is ga

z
. [e,
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46 . Prove that th e area in th e positive quadr ant of th e curve
5

1 n2 2 2 2 7
:

3
_ 1(a a: + 6 y ) m a

3
+ ny i s

[a ,

47. Prove that th e area of th e curve
6

(d
2
x
2 2= c

6(.r
2
y
2
) is

C

{ab (b
2

a
2
) tan

“ 1

a“353
[ST. JOHN

’
s ,

48 . Prove that th e area of th e curve
2 a

? 2 62x? 62x?

(2 +722 1" a
2X?+iz ) z (

d

ig (2
2

where c is less than b oth a and b
,
is flab

49 . P 1 ove that the area of th e curve x4 0

is gm fl. [MATEL TRIPOS ,
50. Prove that th e areas of th e two loops of the curve

—2ar cos 9—8ar + 9a2=0

(327 +

( 1 671 24J3)a
2
.

[MATH TRIPOS,



CHAPTER XI.

SURFACES AND VOLUMES OF SOLIDS OF

REVOLUTION .

153. Volum es of Revolution about the x-axis.

It was shown in Art . 5 that if th e curve y=f(w)
revolve about the axis of a: the portion b etween the

ordinates and 50 s is to b e ob tained by the

form ula

T y
z dx.

Fig. 39 .

1 54. Ab out any axis.

More generally ,
if the revolution b e about any line

AB
,
and if PN b e any perpendicular drawn from a
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point P on th e curve upon th e line AB and P
’

N
’

a

contiguous perpendicular , the volum e is expressed as

Lts A
’ z NN

’

,

or if 0 b e a given point on th e line AB
2a(ozv) .

1 55. Ex. 1 . Find th e volum e form ed by th e revolution of th e

loop of th e curve y2 x22}
? (Ar t. 1 30

,
Ex. 3 ) ab out th e x-axis.

a x
as a a _ x

Here volum e f wy2dx= 7rf x
2 —dx.

0 0
a + x

Putting a x 2
,
this b ecom es

20. 3

a ] (
22 , 50 2+ 4az —z

2)dzZ
a

Z
3 M

7r[2a3 log z 5a2z 2az 2

5]
27ra3[log 2

Ex. 2 . Find the volum e of th e spindle form ed by th e r evolu

tion of a parab olic are ab out th e line joining th e vertex to one

extrem ity of the latus rectum .

Fig. 40.

Let th e parab ola b e y
2= 4axz

Then th e axis of revolution is y= 2x,
and
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about th e x-axis
, y and y Sy th e lengths of the

ordinates of P and Q .

Now we m ay take it as axiom atic that th e area
traced out by PQ in its revolution is greater than it
would b e if each point of it were at th e distance PN
from th e axis

,
and less than if each point were at a

distance QM from the axis .

Then 68 lies b etween 27ry 68 and and

therefore in the lim it we have
dS

dS
27ry or S : 27ry dS.

This m ay b e written as

ds ds ds ( ls
wd

—

m
doc

,
2wyg

—

y
dy,

27ryd
—

6
d6 , 271-1] fi

dr
,
etc .

,

as m ay happen to b e conven ient in any particular
ds ds ds

exam ple
, th e values of

dx dy
’

dG
’

from the differential calculus .

1 57. Ex. 1 . Find the surface of a b elt of th e parab oloid
form ed by the revolution of the curve y2= 4ax ab out the x-axis .

etc .
,
b eing ob tained

surface 271 y
d
— dxx

47rs/c
—

t

x2

~/x+ a dx

2
3

71 (1 2[(x
sw

im a )% (x. a)? 1

Ex. 2 . Th e curve r = a ( l + cos 0) revolves ab out th e initialline . Find th e volum e and surface of th e figure form ed.

Here volum e fwy
2dx 71

'f7'2sin29 d(r cos (9)
71 a

2
( 1 cos 0)

2
s in29a d(cos 0 cos

29) ,
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the lim its b eing such that th e radius sweeps over th e upper
half of th e curve.

Hence volum e 7m
3

f
1

( 1 cos O)
2
( I 2 cos O)sin

3Od0

0

3

f
1r

<1 4 COS 9+ 5 QQS
29+ 2 00839)8111

30d9

o
‘

s?O)sin
39 ( 10

Fig. 42.

surface 27rfyds= 271 sin 0
2

6

52620
0

27rj
2

610 cosO)s in OMa 2( 1 cos O)
2

a
2
sin29d9

o

27ra 2f
'

( 1 cos O)sin O 2 cosn
0

1 671 cos
4-
0

. sin 5
0
-039

327ra2

EXAMPLES.

1 . Ob tain th e surface of a sphere of radius a (i.) by Cartesians,
by polars, taking th e origin on th e circum ference.
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2 . A quadrant of a circle
,
of radius a

,
revolves round its chord.

Show that th e surface of th e spindle generated
2m w2(1 at):

3

and that its volum e
vra

( 10

3 . The part of th e parab ola y
2= 4ax cut off by th e latus

rectum revolves ab out th e tangent at th e vertex. Find the
curved surface and th e volum e of the reel thus generated.

THEOREMS OF PAPPUS on GULDIN .

1 58 . 1 . When any closent ca rve r evolves about a

line in its own plan e, which does n ot cut the cur ve
,

the volum e of the r ing form ed is equa l to that of
a cylinder whose base is the cwrve and whose height

is the length of the path of the centr oid of the area

of the curve.

Let the cc-axis b e th e axis of rotation . Div ide the
area (A) up into infin itesim al rectangular elem ents

with sides parallel to the coordinate axes
,
such as

Fig. 43.

P
1
P
2
P
3
P
4 ,
each of area 8A . Let th e ordinate P

I
N
1 y.

Let rotation take place thr ough an infin itesim al angle
89 . Then th e elem entary solid form ed is on base 6A

and its height to first order infinitesim als is ydO, and

therefore to infinitesim als of th e third order its volum e

is 6A
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of the cylinder whose base is the cur ve and whose

height is the length of the path of the cen tr oid of the
per im eter of the cu rve.

Let th e ce-axis b e th e axis of rotation . Divide the
perim eter 8 up into infin itesim al elem ents such as F

I
R
2

each of length 68 . Let th e ordinate P
l
N
1
b e called

Let rotation take place through an infin itesim al angle
60. Then the elem entary area form ed is ultim ately a

rectangle with sides
’

6s and y60, and to infinitesim als

of the second order its area is 68 y60.

Fig. 44.

If th e rotation b e through any finite angle a we

obtain by sum m ation 6s ya .

If this b e integrated over the whole perim eter of

th e curve we have for th e curved surface of th e solid
form ed

a yds.

If we seek th e value of th e ordinate (77) of th e

centroid of th e per im eter of th e curve
,
each elem ent

68 is to b e m ultiplied by its ordinate
,
and th e sum of
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all such products form ed
,
and divided by th e sum

the elem ents
,
and we have

LtEy6s

Lt 2 68

or in the language of the Integral Calculus

Thus yds 8 77,

and th e surface form ed —s(afi

But s is th e perim eter of th e revolving figure , and
an is th e length of th e path of th e centroid of the
per im eter .

This estab lishes th e theorem .

COR. If th e curve perform a com plete revolution
and form a solid ring ,

we have a = 27r and

surface s(2wfi) .

Ex. Th e volum e and surface of an anchor-ring form ed by
th e -revolution of a circle of radius a ab out a line in the plane of

th e circle at distance d from th e centre are respectively
volum e 7ra

2 27rd 27r2a2d
,

surface 2m l x 27rd 47r2ad.

EXAMPLES.

1 An ellipse revolves ab out th e tangent at th e end of th e

m ajor axis . Find th e volum e of th e surface form ed.

2 . A square revolves ab out a parallel to a diagonal through
an extrem ity of th e other diagonal . Find th e surface and

volum e form ed.

3 . A scalene triangle revolves ab out any line in its plane
which does not cut th e triangle . Find expressions for th e

surface and volum e of th e solid thus form ed.
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1 60. Revolution of a Sectorial Area.

When any sectorial area OAB revolves about the

initial line we m ay divide th e revolving area up intoinfin itesim al sectorial elem ents such as OPQ,
whose

area m ay b e denoted to first order infinitesim als by

57
269. Being ultim ately a triangular elem ent

,
its

centroid is 43 of the way from 0 along its m edian
,
and

in a com plete revolution th e centroid travels a distance
27r( sin 0) or a

i

m
-
r sin 6.

Fig. 45.

Thus by Guldin ’

s first theorem the volum e traced
by th e revolution of this elem ent is

g—r
269 § 7rr sin 9

to first order infinitesim als
,
and therefore th e volum e

traced by th e revolution of th e whole area OAB is

731 11 r
3
sin 9 CM.

1 61 . If we put

w= r cos O, y
= r sin O, and t= tan 9,

we have r
3
sin O6O r

3
sin O6(tan

‘ 1t)
6t

3 3
7
3
sm O .

1 + t
2

r cos Ot 6t —
.p t 6t,
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10. Find th e volum e of th e solid form ed by th e revolution
ab out th e prim e radius of th e loop of th e curve r

3=a
39 cos 0

_
fl

'

b etween 0— 0 and 9
[OXFORD

1 1 . Show that if th e area lying Within th e cardioide
r = 2a ( 1 + cos O) ,

and without th e parab ola r ( 1 + cos O)= 2a , revolves ab out the

in itial line
,
th e volum e generated is 1 87ra3. [TRINITY,

1 2 . Th e loop of th e curve 2ay2=x( .v -a )
2 revolves ab out th e

straight line y= a . Find the volum e of the solid generated.

[OXFORD,
1 3 . Show that th e coordinates of th e centroid of th e sectorial

area of r =f (O) b ounded by th e vectors O= u
, O=B,

has for its

coordinates

g-f
fi
s cos ede gf

f
r
s
sinwe

1. f
.

1 4 . Show that th e centroid of th e cardioide r = a( l —cos 0) is

on th e in itial line at a distance 2
6

6
—
7” from th e origin .

1 5 . If th e cardioide r =a( l cos 0) revolve round th e line
p
= r cos(O—

y), prove that th e volum e generated is
3pii

-2
a
2
gw

2
a
3
cos y. [ST. JOHN

’
s
,

1 6 . Th e curve r a( l e cos where e is very sm all
,
revolves

ab out a tangent parallel to th e in itial line . Prove that the
volum e of th e solid thus generated is approxim ately

2 1r 2a3( 1 e
2
) . [L o. s . ,

17. The lem n iscate r
2

a
2
cos 2 9 revolves ab out a tangent at

7r
2
a
3

th e pole . Show that the volum e generated is
4



CHAPTER XII.

SURFACE INTEGRALS.

SECOND-ORDER ELEMENTS OF AREA.

MISCELLANEOUS APPLICATIONS.

1 62. Use of Second Order Infinitesim als as Ele
m ents of Area.

For m any purposes it is found necessary to use for

our elem ents of area second order 1nfin1tes1m als .

1 63. Suppose
,
for instance

,
we desire to find the

m ass of the area bounded by a given curve , the w-axis ,
and a pair of ordinates

,
when there is a distribution

of surface-density over th e area not un iform
,
but

represented at any point by o y) , say ,
where

(w, y) are the coordinates of th e point in question .

Let Ow
, Oy b e the coordinate axes

,
AB any arc of

the curve whose equation is { a , f(a )} and

{ b , f( b)} the coordinates of th e points A ,
B upon it ;

AJ and BK th e ordinates of A and B . Let PN
, QM

be any contiguous ordinates of th e curve , and w,
w+ 6cc

th e ab scissae of the points P and Q. Let R
,
U b e

contiguous points on the ordinate of P whose ordinates
ar e y , y+ 6y. And we shall suppose 6y sm all
quantities of the first order of sm allness.

Draw RS
,
UT

,
P V parallel to the x-axis . Then th e
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area of the rectangle ESTU is 6w. 6y,
and its m ass

m ay b e regarded (to the second order of sm allness)
as a(cc, y)6ec 6y.

Then the m ass of the strip PNMV m ay b e written
y)6y]6w’

or in conform ity with the notation of the Integral
Calculus

as
, y)dy 693.

between th e lim its y O and y In perform ing
this integration (with regard to y) w is to b e regarded
as constant

,
for we ar e finding th e lim it of the sum of

th e m asses of all elem ents in the elem entary str ip PM,

the m ass of the strip PM

If then we search for the m ass of the area AJKB
all such strips as th e above m ust b e sum m ed which
lie b etween the ordinates AI ,

BK
,
and th e result m ay

be written
Lt5x=02 ¢(w, y)dyjl6x,

which m ay b ewritten
¢(w, y)d dw,

the lim its of th e integration with regard to ac being
from ee= a to ce=b.
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1 98 INTEGRAL GALGULUS.

b e m ultiplied by 4 , for th e distribution b eing sym m etrical in
th e four quadrants th e m ass of the whole is four tim es that of
the first quadrant.

Thus m ass 4

Putting x : a sin 9 and dr =a cos 9 d9, we have

0

m ass 4jaa
4

j s1n
2Ocos2Odd

0

“st ? AG4“2
2F(3)

1 65. Other Uses of Doub le Integrals.

Th e sam e theorem m ay b e used for m any other
purposes

,
of which we give a few illustrative exam ples

,

which m ay serve to indicate to the student th e field
of investigation now open to h im . But our scope in
the present work does not adm it exhaustive treatm ent

of the subjects introduced.



DOUBLE INTEGRATION . 1 9 9

Ex. Find th e statical m om ent of a quadran t of th e ellipse

ab out the y-axis, the surface-density b eing supposed uniform .

Here each elem ent of area 623 6g is to b e m ultiplied by its
surface density a (which is by hypothesis constan t in th e case

supposed) and by its distance x from th e y
-axis

,
and th e sum

of such elem entary quantities is to b e found over th e whole
quadrant. The lim its of th e integration will b e from y

=0 to

y
=éJa 2—x2 for y ; and from .v=0 to .v=a for .v. Thus we have

a a
va z—x?

(TO a

m om ent f f dxdy rJa2 w2dr
a

0 O 0

1 66. Centroids. Cartesians.

The form ulae proved in statics for the coordinates
of the centroid of a num b er of m asses m

1 ,
m
2 ,
m
3 ,

at points (ml , yl ) , y2) , etc.
,
ar e

2 m m Em y
2 m

y
2 m

We m ay apply these to find the coordinates of the

centroid of a given area. (See also Arts . 1 58
,

For if 0
' be the surface—density at a given point,

then 0 693 6y is the m ass of th e elem ent
,
and

656 6y)w

6m 6y)
or

,
as it m ay b e written when th e lim it is taken

£6
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y dxdy
Sim ilarly

the lim its of integration b eing determ ined so that the
sum m ation will b e effected for th e whole area in

question .

Find th e centroid of the elliptic quadrant of th e Exam ple in
Ar t. 1 65 .

I t was proved there that th e lim it of th e sum of th e ele

O
' ba2

3

0 dxdy m ass of the quadrant

m entary m om ents ab out th e y-axis was

Hence
o ba2 m rab 4 a

3 4 371'

Sim ilarly y if}
.

371'

1 67. Mom ents of Inertia.

When every elem ent of m ass is m ultiplied by the
square of its distance from a given line ,

th e lim it of
th e sum of such products is called th e Mom ent of

Inertia with regard to th e line .

Such quantities ar e of great im portance in Dynam ics .

Ex. Find th e m om ent of inertia of th e portion of th e para
b ola y2= 4ax b ounded by the axis and th e latus rectum ,

ab out
th e .v-axis supposing th e surface-density at each point to vary
as th e nth power of th e ab scissa .

Here th e elem ent of m ass is

MW 82 ,

p. b eing a constant
,
and th e m om ent of inertia is

LtEur/
2x

n6r 6y or affy
2
a
mdx dy,

where the l im its for y ar e from O to and for x from O to a .
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th e angular coordinates of P and Q. Draw two cir

cul ar arcs RU
, ST,

with centre 0 and radii r and r + 6r

respectively ,
and let 69 and 6r b e sm all quantities of

th e first order . Then
area RSTU sector OST sector ORU

%(r 6r )
269 57

2 69
—
r 69 6r to the second order ,

and to this order RSTU m ay therefore b e cons idered
a rectangle of sides 6r (RS) and 769 (arc RU) .

Fig. 48.

Thus if the surface—density at each point R(r , 9) is
o

'

¢ (r , the m ass of the elem ent RSTU is (to second
order quantities G r 69 6r , and the m ass of the sector
is therefore

Lt0r =0[2 G T 67189,

th e sum m ation being for all elem ents from r =O to

r i .e.

in which integration 9 is to b e regarded as constant
,

and taking th e lim it of the sum of the sectors for
infinitesim al values of 69 b etween any specified radii
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vectores OA(9= a ) and we get th e m ass of

the sectorial area OAB
f (9)

o r dr] d9 ,

or as we have agreed to write it (Art.

f (9)

o r d9 dr .

Ex. Find th e m ass of a circle for which th e surface-dens ity
at each point varies as th e distance of that point from a point
0 on the circum ference.

Taking O as the origin
,
and th e diam eter through 0 as the

initial line
,
and a as th e radius

,
th e equation of th e curve is

r =2a cos 9.

Then we have density at R (r , 9) is h r , and m ass of elem ent
ESTU is ur(r 89

Fig. 49.

The m ass of th e sector is therefore

or [jur
2drj69,

th e integration with regard to r b eing b etween lim its
OR=O and OR= 0P = 2a cos 9.

h
And if these sectors b e sum m ed for the whole circle

,

ave
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W
"

2
"

a cos

or (Ar t. 1 64) 2f [
I

00

g 3 2a cos
‘9 32 3

o
f pt 3 0

cos 9 9
9

0

1 69. Centroid. Polars.

Th e distance of the centroid of a sector ial area from
any line m ay b e found as b efore by finding th e sum

of th e m om ents of the elem entary m asses about . that
line and dividing by the sum of the m asses .

Thus o r 69 6r being the elem ent of m ass and r cos 9
its ab scissa,

its m om ent about the y
-axis is

r cos 9 . o
-r 69 6r .

cos 9 o
-
r d9 dr

sin 9 a r d9 dr

and sim ilarly y

Ex. 1 . Find th e centroid of th e upper half of th e circle in
th e exam ple of Ar t. 1 68 .

We estab lished th e result for that sem i-circle that
[fo r d9m a

gnat
e

Also b etween th e l im its r =O and r = 2a cos 9 for r , and 9=O to

9=gfor 9,
2a c03 9

r cos 9o-r d9 dr [ p cos 9E4-JO d9

0

4 2 32 4

4 4 IL“
pa ] cos 9 9

1 5
0
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“
2

'

_ gc
fl

f (3 cos
29+ cos

49)d9
0

l . z +§ .

1
_ I )3 2 2 4 2 2

4 3377 5 5
3

a ~ vra

3 4 4 4

1r 2 a (l-l-c08 6)
Th e denom 1nator =2 f g]

0
o

Hence -7ra

Ex. 3 . In a circle th e surface-density varies as the nth power
of th e distance from a point 0 on the circum ference. Find th e

m om ent of inertia of th e area ab out an axis through 0 perpen
dicular to th e plane of th e circle.

Here
,
taking 0 for origin and the diam eter for in itial line

,
the

b ounding curve is r = 2a cos 9, a b eing th e radius. The dens ity

Hence th e m ass of th e elem ent Sr is pr
n + 189 Br , and its

m om ent of inertia ab out th e specified axis is prn +389
Hence the m om ent of inertia of th e disc is

ur
n +3d9d?‘

where th e l im its for r ar e 0 to 205 cos 9, and for 9, O to g(anddoub le) .

—
2fi cos

n+49d9

0
1

2p. n+ 3
”72

2 "fr“ d
n+ 4
<a )

awl-41
0

COS 0 0
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Again
,
th e m ass of th e disc is

2a cos 9
M= 2] f M

e
owdr

-
2

cos
n + 29 d9.

n

EXAMPLES.

1 . Find the centroid of th e sector of a circle
(a) when th e surface-density is uniform ,

when the surface-density varies as the distance from
th e centre.

2 . Find th e centroid of a circle whose surface-density
.

varies
as the nth power of the distance from a point 0 on the circum
ference.

Also its m om ents of inertia

§
1 ) ab out th e tangent at 0,
2) about th e diam eter through 0 .

3 . Show that th e m om ent of inertia of th e triangle of uniform
surface-density b ounded by th e y-axis and th e lines y=m

l
x+ cl ,

y
=m 27c+ cm ab out the y

-axis, is

where M is th e m ass of th e triangle.

4 . Find th e m om ents of inertia of th e triangle of un iform
surface-dens ity b ounded by th e lines

y
=m 1x+ cp y

= m
2x+ 021 9

=m
3~x+ 0

31

ab out th e coordinate axes and show that if M b e th e m ass of

th e triangle
,
they ar e the sam e as those of equal m assesplaced at th e m id-poin ts of the s ides .

5 . Show tha
z

t th e m om ents of inertia of a uniform ellipse
b ounded by

$

( L
i 1 about th e m ajor and m inor axes ar e

M62 Mar.
2

and ”

I
"and ab out a line through th e centre

M
a
2
+ 62

4

respectively
and perpendicular to its plane , M b eing th e m ass

of th e ellipse.
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6 . Find th e area b etween th e circles r =a
, r
=2a cos 9 ; and

assum ing a surface-density varying inversely as th e distance
from th e pole

,
find

( 1 ) th e centroid
,

(2) th e m om ent of inertia ab out a line through th e poleperpendicular to th e plane.

7. Find for the area included b etween the cur ves

( 1 ) th e coordinates of its centroid (assum ing a

surface-density),
(2 ) th e m om ent of inertia ab out th e x-axis

,

(3) th e volum e form ed when this area revolves ab out th e

x-ax1s .

8 . Find th e m om ent of inertia of th e lem niscate a
2
cos 2 9

ab out a l ine through th e pole perpendicular to its plane
( 1 ) for a uniform surface-density,
(2 ) for a surface-density varying as th e square of the

distance from th e pole.

9 . Find
( 1 ) th e coordinates of the centroid of the area of the cycloid

x=a (9+ sin y
=a( 1 —cos

(2 ) th e volum e form ed by its revolution
(a ) ab out th e b ase (y r -2a ),
(b ab out th e axis
(0 ab out the tangent at the vertex.
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CHAPTER XIII.

DIFFERENTIAL EQUATIONS OF THE FIRST

ORDER.

VARIABLES SEPARABLE . LINEAR EQUATIONS.

170. It is proposed to add a b rief account of th e

com m on m ethods of solution of the m ore ordinary
form s of differential equations leading up to such
as are required by the student in his reading of

Analytical Statics , Dynam ics of a Particle
, and the

elem entary portions of Rigid Dynam ics .

We shall not enter at all upon the solution of

differential equations involving partial differential
coefficients .

171 . Genesis of a Differential Equation.

Let us exam ine for a m om ent how the
“
ordinary

differential equation is form ed
,
and what kind of

result we ar e to expect as its solution .

”

Any equation ,
such as

f(x:

in which th e form of th e function is known ,
is r epr e

sentative of a certain fam ily of curves , for each indi
vidual of which th e constant a receives a particular
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and definite value , the sam e for the sam e curve but
different for different curves of the fam ily .

Prob lem s frequently occur in which it is necessary
to treat the whole fam ily of curves together , as , forinstance

,
in finding another fam ily of curves

,
each

m em b er of which intersects each m em b er of the form er

set at a given angle , say a right angle. And it will be
m an ifest that for such Operations , the particulariz ing
letter a ought not to appear as a constant in the

functions to b e operated upon ,
or we should be treat

ing one individual curve of the system instead of th e

whole fam ily collectively .

Now a m ay b e got r id of thus
Solve for a ; we then put the equation into th e form

y) a
, (2)

and upon differentiation with regard to a)
,
a goes out

,

and an equation involving w
, y and y, , replaces

equation (I ) .
This is then the differential equation to th e fam ily

of curves
,
of which equation ( 1 ) is the typical equation

of a m em b er.
In th e form ation of th e differential equation it m ay

b e im practicab le to solve for th e constant. In this
case we differentiate the equation

f(oc, y,
a”) 0

with respect to a: and ob tain
5
+
f af dy _ 0
ax
+
By doc

and then elim inate at between equations ( 1 ) and
thus ob tain ing a relation b etween w

, y,
and yl , Which

is true for th e whole fam ily.

For exam ple
,
consider th e fam ily of straight lines ob tained by

giving special values to th e arb itrary constant in th e equation
y

: m x.
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two unknowns contains on e arb itrary constant the
result of elim inating that constant is a differential
equation of the fir st order ; and

'

if it contain two

arb itrary constants the result is a differential equation
of the second order . And our argum ent is general :
so that to elim inate n arb itrary constants we shall
have to proceed to n differentiations

,
and the result is

a differential equation connecting as
, y,

and

is therefore of the nth order .

Ex. 1 . E lim inate a and c from the equation x2+y2= 2ax+ a

Differentiating, x gy1 a.

Differentiating again
,
1

and th e constants having disappeared we have ob tained as their
elim inant a differential equation of th e second order (312 b eing
th e highest differential coefficient involved) ,which b elongs to all

circles whose centres lie on the x-axis .

Ex. 2 . Form th e differential equation of all central conics
whose axes coincide with th e axes of coordinates .

Here the typ ical equation of a m em b er of this fam ily of

con ics is
Ax2 By

2 1
,

and we have Ar Byyl O

and

whence x(y1
2
+yyz ) —EE1 =0

is th e differential equation sought.

174. Elim ination an irreversib le process.

Now this process of elim ination is not in genera l a
r ever sible pr ocess , and when we wish to discover the
typical equation of a m em b er of a fam ily of curves
when th e differential equation is given ,

we ar e com

pelled to fall back ,
as in the case of integration ,

upon
a set of standard cases

,
and m any equations m ay arise

which are not solvab le at all .

We m ay infer , however , that in attem pting to solve
a differential equation of th e nth order we are to

search for an algebraical relation between as
, y,

and n



VARIABLES SEPARABLE . 2 1 5

arb itrary constants , such that when these constants
ar e elim inated the given differential equation will
result. Such a solution is r egarded as the m ost

general solution obtainab le.

DIFFERENTIAL EQUATIONS or THE FIRST ORDER.

175. There are five standard form s.

CASE I . Variab les Separab le.

All equations in which it is possib le to get dc: and
all the 93

’

s to one side ,
and dy and all the y

’

s to the

other
,
com e under this head, and solve im m ediately

by integration .

d
E . 1 , Th If _ 3x us secy secx

dx
’

we have cos x dx cosy dy,

and integrating
,

sin a: sin y A
,

a relation containing one arb itrary constant A.

x2 1 dyE 2 . IfX

3/ 1 d

we have (a;
and therefore 3

2

+ loga:
3g+2

3

A,

containing one arb itrary constant A.

EXAMPLES.

Solve th e following differential equations
1 . x coszy dye :

31 cos
z
xdy.

J 2 ,
E w 3 , E M
dx y

2
+y+ 1 dx x2+x+ l

4 . Show that every m em b er of th e family of curves in Ex. 3

cuts every m em b er of th e set in Ex. 2 at right angles .

2

J 213 l
i t-Q4 ( 1 JG.
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7. Show that all curves for which the square of th e norm al is
equal to the square of th e radius vector ar e either circles or

rectangular hyperb olae.

8 . Show that a curve for which th e tangent at each point
m akes a constant angle (a) with the radius vector can b elong to
no other class than r Aeac°t

9 . Find the equations of th e curves for wh ich
( 1 ) th e Cartesian sub tangent is constant

,

(2 ) the Cartesian subnorm al is constant
,

(3) th e Polar sub tangent is constant,
(4 ) th e Polar subnorm al is constant .

10. Find th e Cartesian equation of the curve for which th e
tangent is of constant length.

176 . CASE II. Linear Equations.

[DEE An equation of the form

yn+Pyn +Ky=R

when P
, Q ,

K
,
R ar e functions of a: or constants is

said to b e linear . Its peculiarity lies in the fact that
no differential coefficient occurs raised to a powerhigher than th e first ]
As we a r e now di scussm g equations of the first

order
, we are lim ited for the present to the case

g1 +Py
=Q

If this b e m ultiplied throughout by c

seen that we m ay write it
d x x

d /e
fp d

Qe
fp d

fp d’” it will be

Thus ye
/ P dx

Qe
fp dxdcc A

a relation b etween w and y satisfying th e given
differential equation ,

and contain ing an arb itrary
constant. It is therefore the solution r equired.

The factor cf
d

which rendered th e left-hand m em

b er of th e equation a perfect differential coefficient is
called an

“integrating factor .
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flzfl l —nfi m QO—n ) ,

which is linear
,
and its solution is

Z e
a

_ n ) Q6
(1

i .e. y
I -n

e
O—mfp dx—

( l —n)

Ex. 1 . Integrate dy +g=y2
dx x

dz/ y
-1

2 _ 1y
dx
+ x

1
or putting

9

dz 2

dx x
and th e Integrating factor b eing

1

e 5:

we have

2 1-1 Aos

1
Ax—x log xy

Ex. 2 . Integrate th e equation dz+x sin 23/ x300s
2
y.

d

Dividing by cos
2
y/ we have

sec
z
y
dy 2x tan y x3 .

dx

tan y
= z

,

+ 2xz =x
3
,

and the integrating factor is e or e
f f

,
giving

z e
fl =fx3efi dx+A .
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x2 w,

dx dw
,

so that ffi e
’ zdx=§fwewdw

ée
wfiu

Thus tan y . e
x2=5e

x2

(x
3 l )+A

is th e solution of th e given equation .

It will b e obvious that for exam ples of this kind
considerab le ingenuity m ay b e called into play in

order to effect th e reduction to the linear (or other
known) form .

EXAMPLES.

Integrate the equations
dy1 1 tan x

e

dy 22 .

fi
+ ay— s1n bx. 5 .

—e

dr r

(
e

‘ Wx
7/

)
dx

3 .

d0
+
0
“9"

Jar , m dy
1

7. Show that no greater generality is ob tained in th e solution
of Art . 176 by adding a constant to the index in ob taining the

jp dx
1ntegrat1ng factor 6
8 . Find the curves for which th e Cartesian subnorm al varies

as th e square of th e radius vector.
Integrate th e equations
dy y dy L a

"
1 1

dy n9 °

552
° 10°

awe—
a af

fW—xy

dy 1 _ 11 2 .

a;?
-

:Q
-

9

tany tan s in 31 . [Put y— sm a ]

dz 2 z

[Put z =ey .]

-
C£Z [Put e= logy.]
dx

o

1 5. Find th e curves for which th e sum of th e reciprocals of
the radius vector and th e polar sub tangent is constant.
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1 6 . Find th e polar equation of th e fam ily of curves for which
th e sum of th e radius vector and th e polar subnorm al varies as
the nth power of th e radius vector.
17. Show that the curves for which th e radius of curvature
varies as th e square of th e perpendicular upon th e norm al

I
b elong to the class whose pedal equation is r z—p2=£ Aez ’cl’

,

10 b eing a given constant and A arb itrary.

l" 292

1 8 . Integrate the equations
dy 1 cl"

1
dx
+
x x2

_ tan g/ _ I(3)
d

dx l +x
+x)e

1
secy.

a, fly)(”
doc f en
“)

fl y)
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But if it b e inconven ient or im practicab le to
solve for

dy
, we solve for g,

and wr ite p for dy and
dx a: dw

’
a'

we have

Differentiating with respect to ac
,

d
p
= (Edi,

dx

w 10 ma)
Integrating this equation we have m expressed as a

function of p and an arb itrary constant
Aw: F(p) ( say) . ( 2)

Elim inating p b etween equations ( 1 ) and (2) we
obtain the solution required.

Ex. 1 . Solve
Here

and putting

Ay= e
zg 2

Ex. 2 . Suppose th e equation to b e
E_x dx dx

y
= 6600
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logAx+ 2 logp
'
3

I

n
-J

Aarp
2

6 1
7

and th ep
-elim inant b etween

10
2
+r

=31

and Axp
z
z e l

'

is th e solution sought.

This elim inant is
log{ 1 rt -

é
—x l i:

x y x
But when it is algeb raically im possib le to perform the

elim ination of p, or when
,
if perform ed

,
th e result will b e

m an ifestly unw1eldy, it is custom ary to leave th e two equations
containing 10 unaltered, and to regard them as sim ultaneous
equations whose p-elim inant if found would b e th e required
solution .

EXAMPLES.

Solve th e differential equations
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179 . A Special Case.

+ by+ o

a: d
’

x b
’

y+ 0
, i s r eadi ly r educed to

th e hom ogeneous form thus :
Put

The equation

df U»; (a
’

h b
’

lc

choose h,
70 so that

ah bk c O
,

a
’

h 670 c
’

O

h k 1“3° so that
bc

’

b
’

c ca
’

c
’

d ab
’

a
’

b
'

0177 065+ bnThen
075 afg+

This equation b eing hom ogeneous we m ay now

put and the variab les ar e separab le as before
shown .

1 80. There is one case
,
however

,
which h

,
k

cannot b e chosen as above
,
viz .

, when
a b

—=l
‘

c

a
’

b
’

Now let m and am+ by= 37.

dy l

<
dn

dx 7) boa
—a)

so that
dn + bo

da: m n+ c

da:
Wh y

—F0
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EX. 2 . Integrate {hi
dx x+y

— 1

L8 13 w+y
=
n, then

0177 n 277
—1

dx

aw n 1
1 1

]2n
— 1 2 2n

— 1

tfl—i IOQ Qn— IHA,

where n
=x+y.

EXAMPLES.

Integrate the equations

l .
5 E

l! x+y+ l
'

dw x+y
—1

3 glg 2x+y
—2

6 E
ll x+3l + l

dx 3w+ y
— 3

°

dx 2x+ 2y+ l
°

7. (2x+ 3y—5)
C
-¥i3—Z+ 3x+ 2y

—5=O.

8 (2x+ 3y 5)
dy+ 2x+ 371 —1 =—O

9 . Show that a particle 30
, 31 which m oves so that

da
clt

ax+ky+g,

fl
”

;
wil l always lie '

upon a con ic section .

10. Show that solutions of th e general hom ogeneous equa
tion f<i, gig) m ust always represent fam ilies of sim ilar

curves.

Show that solutions of f<Z, bill-(Z ) ar e hom ogeneous in x
,

y and som e power of a s ingle constant, and conversely that
th e typical equation of a m em b er of a fam ily of curves b e hom o

geneous in x
, y and som e power of one constant

,
th e difi

’

erential
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equation ’

of th e fam ily is hom ogeneous and th e fam ily consists
of s im ilar curves .

1 2 . State which of the following fam ilies of curves ar e s im ilar
sets

( 1 ) y
2= 4ax.

(2 ) y a cosh

for different values of a and b.

1 82. CASE IV. One letter ab sent.

a: ab sent.

A. Suppose as ab sent from the differential equation ,

which then takes th e form
ft , ail-H

dywe now solve for
clw

or y,
as m ay be m ost conven i ent.

Olg
‘

( i.) If we solve for
doc
we throw th e equation into

the form
ol

5, 9601 )

Then da:
dy

and the 1ntegral 1 s

da A.

( ii .) If this b e inconven ient or im possib le we m ay
solve for y and ob tain where p stands as

before for Egg.

Ola:

(4) y 2a3logs
a
3
°

(5) b tan
-1”

(6 x3+y
en . 3axy
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Differentiate with r egard to w,
i .e. the absent letter .

~ dr

Thus 513
1 Sfiéflclp

-FA .

After th e integratlon i s perform ed we elim m ate 10

b etween this equation and y : ¢ (p) and th e solution
of the given equation is obtained.

1 83. y ab sent.

B . Suppose y ab sent from th e differential equation
which then takes the form 3

Since this m ay be written

w o
,

and therefore if y b e regarded as th e independent
variab le th e foregoing rem arks apply to this case also.

Thus
Ola:

(i. ) if convenient we solve for
cl

and obtain a
'

result of th e form y

then
and th e integral is
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Then differentiating with r egard to the absent letter g,

_
1 019

q
_ (1

dy l l

dq q r
’

and g
: log g+

2

1

2 2
9
2
+A,

and th e g
-elim inant b etween this equation and the original

equation x=g+-
1
is th e solution required.

9

EXAMPLES.

Solve th e equations
dr2 7 2 2

dx 3/
5 )

dx
a + 2ag

1 W e (a2
d33

_ x +
x

6 g s1n

d
—
x 85

00s

da'

(
Olaf (

dryJa + x
fi
+x O 7 g A

dx
+B

dd"
012/ (

dry r2 24. a + 2ax.

dx
A+n.

dz/
184 . CASE V. Clairaut 3 Form , g : m

dx

dyWriting 19 for
else
we have

Differentiating with regard tom ,

014 ?

daz
’

f
d

1 93+f (pn
c

—

i
—g

whence either 53—2 0 or 0.

doc
0 gives p O a c onstant.
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Thus y : 0az is a solution of the given differ
ential equation contain ing an arb itrary constant
Again ,

if p b e found as a function of a: from th e

equation
a+f (p) O

, (3 )

equation (2 ) will still b e satisfied
,
and if this value of

p be sub stituted in equation or which is th e sam e

thing ,
if p be elim inated b etween equations ( 1 ) and (3)

we shall obtain a relation between y and a: which also
satisfies the differential equation
Now to elim inate p b etween

y s +f (r )
0

is the sam e as to elim inate 0 b etween
y 0x+f (0 )
0= w+f<0>

i .e. th e sam e as the process of finding the envelope of

the line y a: Caz+fl0 ) for “
different values of 0.

There ar e therefore two classes of solutions
,
viz .

( 1 ) Th e linear solution ,
called the com plete prim i

tive
,

” containing an arb itrary constant.

( 2) Th e envelope or singular solution containing
no arb itrary constant and not der ivab le from
the com plete prim itive by putting any
particular num erical value for th e constant
in that solution .

The geom etrical relation b etween these two solu
tions is that of a fam ily of lines and their envelope.

It is b eyond the scope of this book to discuss fully
th e theory of singular solutions

,
and the student is

refer red to larger treatises for further inform ation
upon th e subject.
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Ex. Solve g :

1990+
26

.

P

By Clairaut’

s rule th e com plete prim itive is

and th e envelope or s ingular solution is th e result of elim inating
277. b etween the ab ove equation and

a

m
g

g
? 4ar .

The student wil l at once recogn iz e in th e singular solution
y
2= 4ax th e equation to a parab ola

,
and in th e com plete prim i

O=x

tive g=m x+% the wel l known equation of a tangent to th e

parabola.

EXAMPLES.

Write down th e com plete prim itive
,
and find the envelope

solution in each of th e following cases
1 . g

=
px+p

2
. 4 .

2 . g px+p
3
. 5 . g

= (x — a)p—
p
2
.

3 . 6 . (g
—
pxXp

1 85 . Th e equation
( 1 )

m ay b e solved by difier en tia ting with r egard to a
,

and then con sider ing p as the independent var iable.

For differentiating ,
we have

20 ¢ (r ) WOO m agi.
Mr ) M r )

¢(F)—r ¢(p)—r
’

which is linear
,
th e solution b eing

p)we W ”?
e

dx
whence

dp
a
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8 . Th e tangent at any point P of a curve m eets th e ax1s 0g m

T
,
and OT2 i s proportional to the tangent of th e inclination of

P T to the axis 037. Find th e curve .

9 . Find th e differential equation of all curves which possess
th e property that th e sum of th e intercepts m ade by th e tangent
on th e coordinate axes IS constant . Ob tain as th e com pleteprim itive th e equation of th e tangent

,
and as the singular solu

tion th e curves in question.

1 0. Ob tain th e curves for which th e area of th e triangle
b ounded by the axes and a tangent is constan t.
1 1 . Form the differential equation of curves for which the,length of th e portion of th e tangent intercepted b etween the

coordinate axes is constant. Ob tain and interpret th e com plete .

prim itive and th e s ingu lar solution .

1 2 . A curve satisfies th e differential equation g=p2(x p) , and
also thatp :—0 when determ ine its equation .

[Oxr onm 1 889 .

1 3 . Find th e com plete prim itive and s ingular solution of th e

equation
3

_
dr dy

“2 “2
3
3x<y d (cl—x) [Oxronu

1 4 . Show that by putting x2=s and g
2= t, th e equation

AWJ1
2
+ (50

2 " s —B)y1 —xr=0
is reduced to one of Clairaut’s form .

Hence write down its com plete prim itive and find its s ingul
solution. Interpret th e 1 esult.



CHAPTER XV

DIFFERENTIAL EQUATIONS OF THE SECOND

ORDER.

EXACT DIFFERENTIAL EQUATIONS.

187. Second Order Equation.

We next com e to th e consideration of the differential
equation of the second order

,

(R(db y, lip 0°

There is no gener a l m ethod of solution
,
but particular

form s arise which present but little difficulty .

1 88 . CASE I . Suppose the Equation linear .

The typical form will be

where P
, Q ,

R ar e functions of 90.

The usual m ethod is first to om it R and try to

obtain or guess a solution of

dzg d

da2
+P

cla

y

z
+ Qy

,

0

Suppose y=f (cc) to b e such a solution . Put
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y1 Zf
’

(w)

aflw) 24 100) Zf
”

(w)
Thus on sub stitution we get

z
2f(w)+

l flw)

Qzflw) R

But f
”

(tc) Pf
’

(a) Qfla ) O by hypothesis . Hence
R

2
2+

fee)
+ 1

”
“

M
an equation which is linear for E

l
.

The integrating factor is

6]WE”
{Rene

d

i
and the first integral is

whence the second integral m ay b e at once ob tained
and the solution effected.

x4

d2 d
Ex. Solve

dx

y
2
+ a

3

3g
—x2y

=x3e 4
.

2

Here g=x m akes g + a
3 91g—x

2
g
=0.

day? are

592 $2 2 231

Hence $22 22 1 fl rz l z ) -7x
2
(xz )=x

3
c

4

and th e integrating factor is e .
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Hence

Jg
“
+ a

4

sinh
‘ fl/

2
2x+A.

a

g
2

a
2
sinh (2x A) .

EX. 2 . Solve 1 +y12=xy2yr
Here g is ab sent. So putting g] p.

log x= log J 1 + 17
2

constant

2

say,

a dg=Jx
2—a

2d.r
,

aw/xz —a
z

a
2

giving ag
2 2

cosh- 12+ b,
a and b b eing arb itrary constants .

EXAMPLES.

Solve th e following equations
1 W2

= 1 6 ° yg+al
2
+y=0

2 1 +g1
2=yy2 7.

3 . 1 +y1
2=x2g2

2
. 8 . g2+xy1 y=£e

i
2h

4 9yz
2=4yr 9 ref s/1

3
[Oxrom t

5

10. Solve th e e uation ( 1 g
? cl_

2
_g _ (

CW) 2g
3 b avin iven

d
q y

dxz
y

(i t
a g 8

that £ =O when y=0. [Oxr onm

1 1 . G iven that x2 is a value of g which satisfies th e equation

x2( log x 1 )dz
find th e com plete solution . [L C. S.,
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1 90. General Linear Equation. Removal of
Term .

Let us next consider th e m ore general equation
y1L+P 1yn—1 +P 2yn—2+

where P
I ,
P
2 , Q ar e given functions of as.

Putting y w
,
we have
291 UZ

1
v
l
z

’

y2
‘UZ

2
fiv

l
z
l

v
z
z
,
etc.

,

whence
QJZn n 'vl z n 1

”(
I
L s z n

The coefficient of z .. 1 is nv1+Pfli
If then 7) b e chosen so that

d?) P
l
dw

or
fv=c

~ f
Q) 72,

the term involving Z n 1 will have b een rem oved.

Sim ilarly ,
if 7) b e so chosen as to satisfy th e differ

ential equation .

th e term containin z .. 2 will have been rem oved.

The coefficient 0 z is

+a ,

and if a value of 1) can b e found or guessed which
will m ake this expression van ish

,
we can

, by writing
Z
1

17, and therefore etc.
,
and z n

= 77n -l , reduce
th e degree of th e equation by un ity. Th e student

should notice that this expression is the sam e in
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form as the left hand m em b er of the given equation .

Hence if any solution y z ?) can b e found or guessed of

th e given equation when th e right hand m em b er is
om itted

,
we can

,
by writing y=vz

,
and then 2

1 n,

r educe th e degree of the equation .

1 91 . Canonical Form .

In the case of the equation of th e second degree

y2+P 1y1 +s =Q,

the sub stitution y
= e

' ”P 1d

will by what h as b een above stated reduce ‘

the given
equation to the som etim es sim pler form

2
2+P

’

z Q’

.

But th e gen er a l solution of this equation has not been
at present

' efi
’

ected;

EXACT DIFFERENTIAL EQUATION.

1 92 . When p is q, 913
193155 is an exact differential

,

and can b e integrated whatever y,

m ay be .

For denotinggig, by yq,
“pyq - l “

P
p
- l
yq- 1daz :

p—l
yq -1dx

=p
- i
yq _ 2

_ (27 ' 1 wp
—2
yq-2dx>

yq -p+ 1dm 509 61 -p yq-pdw q -
p ?/ q -p 1

°

Thus
yqdw

=mpyq _ 1 1 )xp
" 2
yq _3
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DIFFERENTIAL EQ UATIONS.

the given equation is exact ; and that its first in
tegral is

(P u— 1
_

7
P

,

n —2+P
”

n - 3 —2
_ P

l

n -)y

+ (P n _ g Vdfi -FA.

Ex. Is th e equation fly3 1 2fly2 36.913
2
y1 24xy sin a: exact ?

Applying th e test, we have
P3 24x

,
P 2 36902

,
P
I 1 22 3

,
P O=fl

,

and P3 7250+72x 24x=0.

Thus th e equation is exact and its first integral is
1 2x2)y ( 1 22

3 4x3)y1 fly2 cos x A
,

1 2x2y 8010
3
311 +fly2 cos 517+A.

This again will b e a perfect differential if
1 2x2 1 2x2 O

,

which is satisfied. Hence a
,
second integral ‘

will b e
(8m

3 élx3 )y -fly1 sin x+Ax+B,

or M y+fly1

which m ay again b e tested. But it is now ob vious that th e
third and final integral is

fly cos x+ +Ex+ 0.

EXAMPLES.

1 . Show that the equation fly3+ 1 5fly2+ 60fly1 + 60x
2
y e

x is

exact
,
and solve it com pletely.

2 . Solve th e equation
,
_

flyg tin 6y1 sin x(y3 3y1 ) cos x( 3y2 y) s 1n x.

3 . Write down first integrals of th e following equations
(a) Jx‘

yl y e
‘
.

(6) W4
xyi y 93

2
6

‘

(0) x.

4 . Show that if the equation s P
Iyl P0y2 V adm its of

an integrating factor p, then p. will satisfy th e differential
equation

d2
P zfl

—

d%(P 1N) dx



CHAPTER XVI.

GENERAL LINEAR DIFFERENTIAL EQUATION

WITH CONSTANT COEFFICIENTS.

1 95. General Linear Differential Equation.

The form o
,f , the general linear differential equation

of th e nth order is
dn dn

- l dn
—2

dxz+P 1dwn
-

y
1 +P 2dxn

+P ny= V, ( 1 )

where P
I ,
PQ, , P 3 ,

V ar e known functions ofa}.
Let us suppose -that any particular solution ,

can b e guessed,
or ob tained in any m anner .

Then m aking th e sub stitution
y=f (w) z

dn
z d” " l

z dn
’ 2
z

we ob tain +P
dz ?" ldxn

‘ 1

Suppose z 5 2
1 ,
z 55

2 ,
z z n to b e solutions of this

equation ; then it is plain that
a : A

’

l
z
1 +A,,sn

is also a solution of equation (2) contain ing 71 arb itrary,

constants A
l , A2 ,

A
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Hence
y A

l
z
l +Az

z
z +A3

z
g+

is a solution of equation ( 1 ) contain ing fn arb itrary
constants

,
and is therefore th e m ost general solution to

b e expected. NO m ore general solution has b een found.

Th e portion flat) l s tterm ed th e Particular Integral
(P .I andthe r em aining part contain ing th e n arb itrary
constants

,
which 1 s the solution when th e r ight-hand

m em b er of the equation is replaced by z ero
,
is called

the Com plem entary Function If these two

parts can b e found th e whole solution can b e at once
written down as their sum .

1 96. Two rem arkab le Gases.

There ar e two cases in which these solutions can b e

generally readily obtained.

( 1 ) When th e quantities P I ,
P
2 ,

R , are all

constants .

( 2) When th e equation takes th e form
wn
dny (Zn

n 2
dn

—9

w
dwn dwn

—1 + a
2
w

dd}n
-+ Cl/ny V

a
l ,
a
2 ,

an b eing constants and V any function Of ac.

Th e solution of th e second case is readily reducib le ,
as will b e shown ,

to th e solution of an equation com ing
under the first head.

05
1
m

” 1

EQUATION WITH CONSTANT COEFFICIENTS— COMPLE
MENTARY FUNCTION.

1 97. Let us therefore first determ ine th e solution of

such an equation as

yn+a lyn - 1 + d eyu ( 1 )
th e coefficients b eing con stants ; i .e. for th e presentwe
confine our attention to th e determ ination of th e

Com plem entary Function in th e first case .
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Secondly ,
wewill choose A

I
so large and Of opposite

(
sign

.

toA
z
f thatA

1
-A

2
m ay b e regarded as an arb itrary

fin ite constant R
I

. Th en the term s

ultim ately vanish with h since A
2
71. has b een considered

finite and th e eXpressm n m square
’

b rackets is con

vergent and contam s h as a factor .
Thus the term s A

l
e
mflx-l-A z

e
m fix m ay,

when m
2
: m

1 ,

b e ultim ately replaced by B l e
m 1x+B2we

m ix
,
and there

fore th e num b er of arb itrary constants in th e
'

whole

solution r em ains n
,
and we therefore have Obtained

th e gen era l solution in this case .

1 99 .

“

Three Equal Roots.

Consider next th e case when three of the roots of

equation ( 2) b ecom e equal , viz .

,
m
1
=m

2
=m

3
. Th e

term s
,
A
1
3
7n1x+A2

3W +A3
6
m 390

,
have al ready b een re

placed by (RI B
z
az)e

m 1x A
3
e
m 3f”

.

Let m
1

7029132
Then A

g
e
m sx A

3
e
m lxe

kx=A
3
e
m 1x<1 + km+ 2,

Thus for A
l
e
m 1x+A2

e
m 2x+A3

e
m sx we have

1 in x B A k m x
1 4
3
7629326m

(B1 'HA3)6 1
2+ 3 )906 1 +

T
.2 ,

2

+A3
k2w2em 1x

l

g
” 7” x

andwe m ay so choose A
3 ,
B
z ,
and B that

R
I + 14

3
0
1 ,

B
z
—i-

"

A
3
h 0

2 ,

A
3
10? 2C

3 ,

Ci, C2; C3 b em g any arb itrary constants , whatever it
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m ay b e , provided it b e not ab solute z ero. But A
2
k2

being chosen a finite quantity ,
and th e series within

th e square b rackets b eing con vergent, it is clear that
ultim ately ,

when k is indefinitely dim inished, th e
lim iting form Of this expression is

(C1 C
2
2: 0

3
w2)6

m 1x

200. Several Roots Equal .

In a sim ilar m anner it will be Obvious that if p
roots Of the equation ( 2) b ecom e equal , viz .

,

m
1
: m

2
m
p ,

there will be no loss Of generality ln our solution if
we sub stitute th e expression

for the corresponding portion of the com plem entary
fu nction

,
viz .

,

A
1
e
m 1x A

2
e
m zx A

p
e
m px

201 . Generaliz ation.

More generally ,
if

b e the com plem entary function of any linear differ
ential equation with or without constant coefficients ,
what 1 s to replace this expression so as to retain the

generality when m
1
=m

2
?

Let m
2

m 1+ ‘h .

Then
d¢(m 1 ) h2

¢(m 2) ¢ (m 1 +71 ) ¢(m 1 )+ 17“dm
l

2 ! dm f
and th e term s b ecom e

A
22

h
dm

1

1
+ A22 ! 01272

1
2

1

Now putting A
1 +A2

Br -
1 ,
A
2
h=B

2 ,

two arb itrary fin ite constants , th e rem a1n 1ng . term s
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ultim ately disappear when we approach the lim it in
which h is indefin itely dim in ished.

Thus m ay b e replaced by

thus retaining th e sam e num b er (n ) of arb itrary
constants B

1 ,B2 ,
A A

4 ,
An

in th e com plem entary function as it originally
possessed.

And as in Art. 200 we m ay proceed to show that if
p roots becom e equal , viz . m

1
=m

2
th e term s

A
2¢ (m 2) A

p¢(m p)
m ay b e replaced by

B m + 13
1

1 ) 2 dm
l

when th e generality of th e solution will b e retained.

The results of Arts . 1 98 , 1 99 , 200 ar e of course par
ticular cases of this

,
the form of ¢(

fm
1 ) b eing e

m f”
.

202. Im aginary Roots.

When a root of equation (2) ofAr t. 1 97 is im aginary ,

it is to b e rem em b ered that for equations with real
coefficients im aginary roots occur in pairs .

Suppose , for instance , we have
m
1
=a+ zb, m

2
a—

tb,

Where L J fi .

Then th e term s

A
1
e
m 1x+A2

6W or A
1
e<a+w>x [ 1

2
4 66

-t

m ay b e thrown into a real form thus
A
l
e
ax
e
tbx A

z
e
ax
e

cbw

A
1
e
“x
(cos bx L sin bx) A

2
e
ax

(cos bx asin bx)

(A1
A
2)e
“x
cos bx (A 1

A
2)x

ax
sin bx

B
1
e

‘w
cos bx B

z
e
ax
sin bx,
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fprOper num b er (n ) of arb itrary constants r equisite
to m ake the whole solution the m ost general to be
expected. And this

.

rule m ay obviously b e extended

to the case when any num ber of the im aginary roots

are equal .

204. Ex. 1 . Solve th e equation glz-Z _ 3
dy+ 2y=0.

dx2 dx

Here our trial solution is y=Aem and we ob tain
m
2 3m 2 0

,

whose roots ar e 1 and 2 .

Accordingly y A
1
e
x
andy

=A23
2"
ar e b oth particular solutions,

and y
=Al ez

x
+Aze

mC

is th e general solution contain ing two arb itrary constants .

alzyE 2 . S l 2x. o ve

dxz
a, y 0.

Here th e auxiliary equation is m z — a
2=owith roots m : t a

,

and th e general solution is
y

: Al e
ax
+A26

—dx

,

or as it m ay b e written ( if desired)
y Bl cosh ax s inh ax

B l
—B z

2
by replacing A1 by 3 12

3 2
and A2 by

Here th e auxiliary equation is m 2
+ a2=0with roots m = i ac.

Hence th e general solution is
y

—A1cos ax Agsin ax,

or
,
which 1 s its equivalent

,

y B
1cos(ax

053m 4
0329 dy _Ex. 4 . Solve

EF
_ 4
Tx2

+ 5
dx

d

—2y
=0 or (D—I)

Z
(B o,

where D stands for
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Our auxiliary equation is
— 4m 2

+ 577i 2 : O

or

n

(m l )
2
(m O

,

havm g roots 1 1 2 . Accordingly th e general solution 1s

Ex. 5
1

. Solve (DH 1 )(D 1 )y=O.

Our auxiliary equation is
I

(m
2 1 ) (m 1 ) O

with roots 1 c; and th e general sb lution is therefore
y
=A1cos x A

z
sin x A36

”

,

y=B l cos (x B2)+A3e
"

.

Ex. 6 . Solve
Our auxiliary equation

(711
2
+ m + 1 )(m 2)=O

has roots 2
,
and th e general solution is

x

y
=Al e

g
cos Az e sin

x
A36

2”

,

y
é B l e cos (

x

5
3

B 2)+A3e
fi"

.

Ex. 7. Solve (0 2 D 1 )
2
(D 2 )

3
(I) 5 )y=0.

Here obviouslv th e general solution is
y (AI Azx)e

—%
cos

x

(A3 A
4
x)e

_

T7sin
x

f
(A5 ,+A63: A7x

2
.)e
2x Age

“
,

containing eight arb itrary constants .

EXAMPLES.

Write down the solutions of the followm g differential equa
tions :

3d
,

7/ Ga
d
—
2
3 I l a-

dy2
dx3 dxZ dx

6agy=
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cl3y g
dzy dy3 .

d a
9
d 2

+ 23
d

1 5g 0. 7. (D 1 ) (D 2 ) y O

d3y _ 3
dy 2 2

T 5
+ 2y

=0. 8 . (D + 1 ) (D +D+ l )y —O.

9 . (11
2
+ 1 )

2
(D

10.

1 1 . (D 1 )
3
(D 2)(D

B
+

1 2 .

THE PARTICULAR INTEGRAL.

205. Having considered the com plem entary function
of such an equation as F(D)y t ere F(D) stands for

a
1 ,

an b eing constants , and V any function of x
,

we next turn our attention to the m ode of obtain ing
a particular integral , and propose to give th e ordinary
and m ost useful of the: processes adopted.

We m ay write the above equation as y :

1
F<D>

V

(or V) , where F(D) is such an operator that
F(D

206. D satisfies the fundam ental laws of

Algeb ra.

It is shown in th e
'

Differential Calculus that the
Operator D (denoting 3

01

50) satisfies
1 ) Th e Distributive Law of Algeb ra ,

viz .

(2) Th e Com m utative Law as far as regards con

stants , i .e. D(cu )
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208 . Let f( z ) b e any funct1on of z capable
‘

of ex

pansion in integral powers of 2
,
positive or negative

EAr z
r
say ,

Ar b eing a constant
,
independent of z ) .

Then : (EA

(EATD
r
e
ax
)

(EATa
r

flak
“

Th e result of th e operation m ay therefore
b e ob tained by xeplaei 'ng D by a .

1

D3 0 2 D 1

Obviously by th e rule thi s 1 s

—f e
l 2”

or

Ex. 1 . Ob tain the value of

Ex. Obtain th e value of

By th e rule this is

EXAMPLES.

1 . Perform th e operations indicated by
cosh x.

2

2 . Sh tl t 0”
W m 2

(a — bXa —c) D—a

3 . Apply Ar t. 208 to show that
f (D

2
)sin m x

'

=f ( m
2
)sin m x

,

f (D
2
)cos m x f (= m2)cos m x,
h hwas.m =f<m 2>zah m

209 . Operation

N ext let y e
dwY

,
where Y is any function
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“

255

Then since Dr
e
am

a
r
e
a”

we have by’

Leibnitz ’

s Theorem
yn e

dx
(a

n 17+5C1a
n -1DY-l-nC1D

2
1
7
+ Y) ,

which
,
by analogy with th e Binoinial Theorem , (Ar t.

m ay b e wr itten
Dn

e
axY: a)

”Y
,

n b eing a positive integer .

Now let X
so that we m ay wr ite

Y (D a )
"X .

Then from above

Dfl
e
at’Y : a )

”Y

a)
”X e

axX
,

and therefore D ”
e

‘wX a )
”X.

Hence in all cases for integral values of n positive or

n egative

Dn
e

‘wX

2 10. As in Art. 208 we shall have

Amm an )

That is , e“” m ay be tr an sfer r ed fr om the r ight side ,
to

the left of the Operator flD) pr ovided we r eplace D

by D+ a .

1 l x4

EX . 1 . e
"

e
x

e
"

(D - l )
a
x

Ex. 2 .
—
1

— e
2x
sin x e

h —
l
sin x e

gx
sin x.

D2—4D+A D2
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EXAMPLES.

1 . Perform th e Operations
l

l 1
e
x log x.

2 . Show that
e
d it 1

e
bx

e
1

1 1 e

(D+ a -2) (D+ b

21 1 . OperationflD
‘Z

) cos m x.

We have D2

it; m
2
) iii;

and therefore
si sin2r 2 rD
cos

m
cos

m x.

Hence
,
as before , Arts . 208 and 2 10

,
it will follow

that
m x f( —on

2
)fig; m x .

fe
w
sin bxdx D

‘ l
e
u
sin bx e

”

(D a )
“1
sin bx (Ar t. 2 10)

a D

(Art. 2 1 1 )

a

b2)
gi
s in bx tan

EXAMPLES.

1 . Find by this m ethod th e integrals of
e
ax
cos bx

,
e
x
sin2x

,
e
x
sin3x

,
sinh x s in x.

2 . Perform th e operations
D2 1

D2
+ 2 D4 1 D4

+ 1

3 . Ob tain by m ean s of th e exponential values of th e s ine
cosine th e results of th e Operations f (D)cos nix, f (D)sin m x.

sin 2x
,

sin 2x.cos x
,
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m
2

)? D2

[X( m
2

lf

1
1 . Ob t th 1 f s 2Ex am e va ue o

D3+D2+D+ 1
1 11 x

2Th 1s 1 s x
,

D 1

D 1
sin 2x

1 5

1
2
5 cos 2x 1

1
3 sin 2x.

Ex. 2 . Ob tain the value of
(DE1 )3

e
2"’
cos x.

This express ion cos x

D — 3 + SD+ I
cos x

[replacing
cos x

cos x

cos x sin x) .

EXAMPLES.

, 1 . Perform th e operations indicated in the following express ions
D

D - l
e
x
sin x

, e
‘ x
sin x.
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2 . Show that 1
V e e

‘“d dx
,
there

b em g n 1ntegra1 s 1gns.

1
3 . Show that b first ex r essm

1
y p g

F(Z)
operation

F(D)
V m ay b e expressed in term s of a set of com m on

in partial fractions
,
th e

integrations.

21 3. Operator V. V Algeb raic.

1
If in the o eration V

, V b e an al eb raic functionP F(D)
g

1
of x

,
rational and integral , we m ay expand

F (D)
by

any m ethod in ascending powers of D as far as the

highest power of x contained in V.

1 2Ex. 1 . For exam ple
,
find
m 2(x

1 -D 2This 1 s
1 _ D3

(x

( 1 —D+D3
'

- x.

1
Ex. 2 . Agam ,

find
D3+ 3D2+ 7D— 1

This expression is
e
” 1

x3

(D+ l )
2
+ 7(D+ 1 ) 1
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EXAMPLES.

Perform th e operations

x cosh x cos x.

(
_

D— l )

214. Cases of Failure.

In applying th e above m ethods of obtaining a

Particular Integral , cases of failure are frequently
m et with. We propose to illustrate the course of

procedure to b e adopted in such cases .

215. Ex. 1 . Solve th e equation y

The Com plem entary Function is Ae".
To ob tain the Particular Integral we have

1
e
x

D 1

If we apply Ar t. 208
,
the result b ecom es

or 00 .

1 — 1

We m ay evade this difiieulty and ob tain the result of the

operation by applying Ar t. 2 10 when we have
1

D — l

which 1 8 th e particular integral required.

Instead, however, of substituting another m et/20d, let us exam ine
th e operation e

x
m ore carefully.

D 1

Writing x( 1 + Ii) instead of x
,
we have

fi e =Lth _
l
e
xll+hl=Lth=o

l
1
b

e
x
e
M

—Lth_ o
l
e
xx

( H )
—Lth _. OI};+xe

x

; i z
s

I]
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3 . Solve th e equation
sin x+x

2
.

ere th e com plem entary function is plainly
A1 Az e

“ 32
+ (A3+

1 e particular integral consists of four parts
,
viz .

_

1
— e
" 1 e

x

m

e: 1

1 ) (D 4 4 D2
'

(1+ h ) 2 2

(0 1 1?
3
1

4 4

(a part going into th e com plem entary function)

onsider

2

(term s which vanish with

29:

s 1n x

1
sin x

6 20 D2
)

(3 sin x cos x)/20.

Ijinally
1 1

. )x
2

(D
2 3D) (D l )

2
x

3D

1 +

1 D
+
D2

2 _1.:
3D (1 _ 3 (x + 4x . 6 )

1 2
2 4 2

)4
3D(x

l

x+ 6

4

3
x

3
4-
9

*
e th e whole solution 1 8

3/ A
1
A
2
‘2
—3x

' l' (A3 A422)?



Ex. 4 . Solve th e equation —
y
=

ILLUSTRATI VE EXAMPLES.

d4v/

dx“ x sin x.

Th e C .F. is A
1
sinh x Az cosh x A3sin x A4cosx.

To find th e R I . we have 1
1 _ a —

l
-x s1n x

,

which is th e coefficient of c in

i.e. in

i.e. in

i.e. in

i.a. in

i.e. in

Thus th e R I . is

and th e whole solution is
3/ Al sinh x+Az cosh x+A3sin x A

4
cos x

1

D2
+ 1

D2
+ 4

1

D2—1

sin x.

cos 2x.

sinh x.

EXAMPLES .

1 . Ob tain th e Particular Integrals indicated by
1

2
x os x0 2x s 1n x.

8

(D 2 )(D 3 )
e
x

’

1

D4— 1
(s inh x sin x) .

263
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2 DIFFERENTIAL EQUATIONS.

2 . Solve th e differential equations
( 1 ) ZZQ—y z e

”
(2) £ 32 x.

d2y _x

(3)
d

-

x2
+y

= e

(D
2 1 ) (D

3
(5 ) (D 1 )(D+ 1 )D

3
y
=x.

( 6) (D
3 3D2—3D+

(D
3 1 )y=x sin x. (8 ) (D

2 1 )y=xe
’
sin x.

(9 ) (D
2 1 )y= cosh x cos x+ a

x
.

( 10) (D sin2§+ e
x
+xz

d

dx

A transform ation which renders peculiar service in
reducing an equation of the class

216. The Operator x

dxn
+

where A
1 ,
A
2 ,

ar e constants
,
to a form in which all

th e coefficients ar e constants
,
ar ises from putting

x c
t
.

dx dy dyIn this case e
‘
,
and therefore x

dt dx dt

It is obvious therefore that the operators x
d

dt
'ar e equivalent. Let D stand for

(van

(cc-E
l

n 1>xn ‘ 1
dn

_ l
y

(D -fn—l

dwn
" 1

dn
- l

y

dxn
' 1

’
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CHAPTER XVII.

ORTHOGONAL TRAJECTORIES. MISCELLANEOUS

EQUATIONS.

ORTHOGONAL TRAJECTORY .

217. Cartesians.

Th e equation f (x, y,
a ) O is representative of a

fam ily of curves . Th e prob lem we now propose to
investigate is that of finding the equation of another
fam ily of curves each m em b er of which cuts each
m em b er of the form er fam ily at right angles . And in

such a prob lem as this it h as b een already pointed out

that it is necessary to treat all m em b ers of th e first
fam ily collectively ,

so that th e particulariz ing constant
a ought not to appear in th e equation of th e fam ily.

It has b een shown in Art. 1 71
,
that the quantity a

m ay b e elim inated b etween th e equations
f ( £13, y)

a ) O
?

Bf Bf dy _ 0.

8x By dx

Let this elim inant b e
¢(w, y,

This is th e differential equation of the first fam ily.



ORTHOGONAL TRAJECTORY. 267

Now at any point of intersection of a m em b er of

th e first system with a m em b er of th e second system ,

th e tangents to th e two curves ar e at right angles .

Thus if f, 77b e the current coordinates of a point on
a curve of the second fam ily at its intersection with
one of the first fam ily ,

and x
,
y th e current co

ordinates of the sam e point regarded as lying upon
the intersected curve of the first fam ily ,

we have
d) ; dx

Th e differential equation of the second fam ily is

035th fer e ore

d»;
0
,

and when this is integrated we have the fam ily of

Orthogonal Trajectories of the first system .

Th e rule is therefore
Differentiate th e given equation ,

elim inate the

da
dx

’
con stan t

,
write in place of and integrate th eda

new differential equation .

21 8. Polars.

If the curve be given in polars th e angle the tangent
029

m akes with the radius vector is x so our rule is
now

dx
’

Differentiate the equation ,
elim inate the con stant

,

1 dx (1 9
wr1te

r (10
m place of r

dr
” and 1ntegrate th e new

differential equation .

219 . Ex. 1 . Find th e orthogonal trajectory of th e fam ily of
circles

x2+y
2= 2ax

,

each of which touches th e y-axis at th e origin .
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and
,
elim inating a

,
x2+y

2 _ 2x(x fil
ly

)x
d

x2+ 2xd
—
y
2=0.

Hence the new differential equation m ust b e

x2—2xy
d

d
—

z
—
y
2=0

,

dx2 2 2
:

o o o o o o o o o o o o o o o o o o o o o o o o o o oy W
aly

x O,

which is a hom ogeneous equation
,
and th e variab les b ecom e

separab le by th e assum ption y r : vx.

However
, this b eing th e sam e as equation (2) with th e ex

ception that x and y are interchanged
,
its integral m ust b e

y
2
+x2= 2by,

another set of circles, each of which touches th e x-axis at the

or 1g1n.

Ex. 2 . Find the orthogonal trajectory of th e curves
"2
2

1
a
2 A

+
62 A.

0

Ab eing th e param eter of th e fam ily.

x
Here 0,

and Am ust b e el im inated b etween these two equations .

(2) gives 216
2
+

A
b2x+ a

2
yy1

x+9311

so that a
2 A (d

z

and 62 A (06
2 62m ]

Thus th e differential equation of th e fam ily is

_

y
2
+xy(y1

1

) a
2 62.
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5 . Show that th e fam ilies of curves
x3 3xy

z
a

3x23/ y
3 b}

ar e orthogonal .
6 . Show that th e curves
r si11 2a = a (cos 19 cos a ) and r sinh QB=a(cosh ,8

ar e orthogonal .
7. Show that if th e curves

u= a

v= b

form orthogonal system s.

8 . Prove that for any constant value of p the fam ily of curves
cosh x cosec y —

p coty constant

cut th e fam ily pt coth x cosech 30 cos y constant

at right angles . [LONDON,

SOME IMPORTANT DYNAMICAL EQUATIONS.

dzu
220. The equat1on d62

+ 11, =f
’

(u )

is the general form of th e equation of m otion
particle under th e action of a central force.

Multiplying by Q
du

and integrating we have
( id

(335)
which we m ay write as

— 6+B

and th e solution is therefore effected.

221 . Equations of th e form

dgu

de
) + 71

2“=f (0)
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have already b een discussed as being linear with con

stant coefficients .

Th e solution m ay however b e conducted thus
Multiply by sin which will b e found to b e an integrating
factor.
Integrating

,

sin n9-Zl—
Z

a
nu cos sin

Sim ilarly cos 18 an integrating factor and th e correspond
ing first integral 18

cos n9
d2

5+ nu sin n9=f
e

f (9
'

) cos

E lim inating 1 .

d9
’

f
0

f (9
’

) sin n(9 sin 729 A cos 71 9.

0

222. The equation of m otion of a body of changing
m ass often takes som e such form as

(1913

and for this equation ¢(w) will b e found to b e an

integrating factor.

{aegif}
leads at once to f A

,

and the variab les ar e separated.
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FURTHER ILLUSTRATIVE EXAMPLES.

223. Many equations m ay b e solved by reducing to
one or other of the known form s already discussed by
special artifices .

EX . 1 .

dy __

Let ax+ by= zz

Then

xy
= z .

Then

dz dz
1 =x(dx—

y
dx
+

dz
2 : $

333 a
“
;

dx

which is of Clairaut’s form ,
and th e complete prim itive

1
xy —xC-i-

a
.

Ex. 3 . Solve
dx dx

Let est
—
4 77, e

”
: 5.

Then
,
s ince this equation m ay b e arranged as

eydi/>
2

(
eydy

)
2

z 1(631 dx e
xdx
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Let th e transform ation b e such that
dx

then x is known by direct integration as a function of t.

13
dy dt

dx

dzy
dza dtz dfil

dxz 1“if
“
dt ( 1 + ax

2
)%

d2y dzy di/ dt2Thus ( 1 + 0“)
d dt“ax

dz dx
’

and the given equation thus reduces to
d

£ + q
z
y
=0

3

whose solution is y=A sin gt+B cos gt,
and when th e value of t in term s of x is sub stituted, the solution
is com plete.

[If a b e positive we have
1 dx

Jr?
V1a

a;

t.

If a b e negative we have

—a

Jé—a sin a )=

Ex. 6 . Solve th e s im ultaneous differential equations
are linear with constant coefi cients)

dx dz]

dt
9
011

dx dy+7 -

dt
+ 3 x+ 38y

—e

+ 443? 49y t
,
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We m ay write these equations as

—t
,

d
where D stands for

dt

Operating 11 on these equations respectively by 7D+ 38
by SE + 4Q an sub tracting

,
we elim inate y and ob tain

(30 + 49m : 7 38t 58a
,

(D
2
+ 7D+ 6 )x=7+ 38 1:

x=Ae
-t
+Be —2

7
fle
t
.

To ob tain y let us el im inate 5571 from th e original equations .

dt

Multiply th e first by 7 and th e second by 9 and sub tract.

This gives 6

53+ 2x+y=7t
dx

78 9 2y t x
dz

_ 7t— get

Ac“6Be
‘ 6t
+ 1
3
9 2

7
9 6

1

)
—i e

t

.
7/

“ AG
—t-l-élBe

‘ “
[The student should notice th e elim ination of

C
—
lg
—
l
. This av0 1ds

th e introduction of supernum erary constants ] dt

Ex. 7. Solve th e s im ultaneous equations
dzx

3s/_ 1 6 2 0
as 611

+

These equations m ay b e written
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whence operating upon these in turn by D2+ 9 and by SE and
sub tracting

,
we elim inate y and ob tain

[(D
2
+ 9 ) 1 5D2Jx=O,

(0
4
+ 0

,

t.e. (0
2 4 ) (D

2
36 )x=O,

whence x=A sin 2t+B cos 2 t 0 sin 6 t+D cos Gt.

Differentiating th e first equation and sub tracting three tim es

the second to elim inate differential coefficients of y, we have

dx

dt3 dt

whence we ob tain the value of y wit/ ma t any new constants,

v1 z .

2B sin 2t+ 2A cos 2 t i
g
‘m sin 6 t 1

9
9 0 cos 6 t.

EXAMPLES.

Solve th e equations
dgy sin

3

y(
di/>

2
2 x4.

2 + ta1 . 2xyg~i x)3/ 2 . sec y
d ,

2
cos

3

g/ d
ny

3 . (a + 6.23?
d

+A(a barf-{g By
=a'

.

4 . ( 1 2x( 1 + x
2
)d
‘l
—
x

y+y=0.

dx2

x
z d

z
y _ x

dy 2 dfl/ _ —y5 . (1 x
2
)dx2

x
dx
+ n y=0. 6 .

dx
6
1

(e
x

ey) .

dy __ (x y (x+-y) cos x7
fi

2 sin
2 2 cos 3/

8 . Ob tain th e integrals of th e following differential equa
tions

3 2d y _
d J+ 9

ds

(12+ 6337? 97/ 25 cos x.

(c) x
2

d

2
9 _ fw

d? 10 O.

x2 dx
+ y

:

[1 . c .
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ANSWERS.

CHAPTER I .

PAGE 1 2 .

1 . Area e
”

e
“ 3 , Area=45a2tan 9, 4 . Vol.

4

2
a
?)

2 . Vol. _ 7

2

1
'

( 6
2b =

§a
3tan29 5 . V 01. $79 3

6 . (a ) Area z ia
-g—hé

‘

,

1

7

55 £2<1 5h2+ 35ah+
7. §1r1aa

3
. 8 . Mass of half th e sph eroid z imaa

zbz .



sin a) .

ANSWERS .

CHAPTER II .

PAGE 17.

1 . i
lflb

n —a
n ) .

2 . 1
1
1

. + (sin b

n l

3 .

2 I

PAGE 23 .

$
100

$
1000 $

1001 5; g _g
3

100
’

1000
’

1 001
Jim gas 31

—100 —93 1 1 1
a x

4 2x
7

, 6x
“
,
3x

7
3

1 00 9 8

2 b x
2 1 c

5 , b
2 x

’
dx+

2 9 x9

2 4

6 . a logx
—é c

w 55? 2 3 4

1 2
91
2

90
a“

2 a+ 1
’

.2

2 . a log 56 , gt? a log(a 4“x)
1 1 1 1

3 . x a log(a
6
log(a bar) ,

a —x
’

n 1 (a

log2
”

ii, log(a“2 a
2
)

n + 1

3 . log tan
—1
x, log sin

‘ l
x
,
log(logx) .
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PAGE 28.

log(x log,3 log(a"2 é]og(x
3

7

—1

7:
log(x

"
+

2
06
4

2
+

32 0
21

log 2
’

log 3
’

log 6
+
log 0

2

3 .

x sin a: cos
4x tannfl x

2 4 n+ 1
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